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Goals

= Introduce the Hardy space H?(ID) and model
space K, = (uH?)*.

= Introduce key operators on the Hardy space
= Unilateral (forward) shift S: H? - H?

= Compressed shift S,;: K, = K,

= H* — functional calculus A: H* — B(¥,)
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Some notations

= Sets
=D={z€eC: |z|<1} z€eD

=T={z€eC: |z| =1} (eT
= Closed linear span V M = span M
= Measures

da .
"m=_ normalized Leb meas.on T

= M(T) = {complex Borel meas. }, M, (T) = {positive Borel meas. }




rdy space H*(D)




The Hardy space H*(D)

= Three equivalent definitions for H?> = H?(D)

Definition v1 (Taylor coeff.)

HZ(ID)) = {f D — C analytic : z |an|2 < oo, where f(Z) = 2 anzn} Hilbert space
n=0

n=0

Definition v2 (Bounded integral means)

Controls growth
as we approach

H?(D) = {f: D — C analytic : sup J If (rO)?2dm(0) < 00} T
T

0<r<i

Definition v3 (Identify with bdry fcts + no negative Fourier coeff.)

Easier to work with
} bdry fcts / Fourier

H?*(D) = {f € L*(T): f(n) = 0 whenn < —1, where f = Z f(n) series

o @
{



H? = {f:D - C analytic : }}|a,|* < o, where f(z) = Ya,z"}

The qudy Spce H 2 ={f D) = Eeneliiies sy fT |f<rc>|2dm<c)<oo}

={f € I*(T): f(n) = 0whenn < —1,f = ¥ f(n){"}

= Definition v1 (Taylor coeff.)

H?(D) = {f: D — C analytic : ZIanl2 < oo, where f(z) = z anz"}
n=0 n=0

Equip this space with inner product

(write the
(f,9)= <z anzn,z an”> = z a,b, corresponding
n=0 n=0 n=0 norm as ||-||)

So that H? becomes a Hilbert space.




H? = {f:D - C analytic : }}|a,|* < o, where f(z) = Ya,z"}

The qudy Spce H 2 ={f D) = Eeneliiies sy fT |f<rc>|2dm<c)<oo}

={f € I*(T): f(n) = 0whenn < —1,f = ¥ f(n){"}

= Definition v2 (Bounded integral means)

H?*(D) = {f: D — C analytic : sup J If (rO))?dm(0) < 00}
T

0<r<1
Now, using the fact that

co

24 _ |2r2n
| eORdn@ =) laslr

n=0

We can get

Proposition Let f: D — C be analytic. Then f € H* iff sup [ |[f(r{)]|?dm({) < oo.
0<r<i1

Moreover,

version 1 - ||f||2 = sup f |f(1”()|2dm(()
T

0<r<1




H? = {f:D - C analytic : }}|a,|* < o, where f(z) = Ya,z"}

The qudy Spce H 2 ={f D) = Eeneliiies sy fT |f<rc>|2dm<<)<oo}

={f € I*(T): f(n) = 0whenn < —1,f = ¥ f(n){"}

Definition v3 (Identify with bdry fcts + no negative Fourier coeff.)

H?(D) = {f € L>(T): f(n) = 0 whenn < —1, where f = z f(n)("}

n=—oo

How do we identify f: D — C with a function f: T — C ? We need Fatou’s theorem

Theorem (Fatou) Let y € M(T) and { € T. If Corollary Let f = Ya,z" in H?. Then
(D) () exists, then :> lim £ (rQ) = lim P(fdm) (r0) = f(9)
rlg?— P(u) (rd) = (Du)(O) exists for m-a.e. { € T.

i.e. P(u) has a finite radial limit m-a.e. on T.

Symmetric ~ Poisson integral |
derivative Pu):D - C ; &



H? = {f:D - C analytic : }}|a,|* < o, where f(z) = Ya,z"}

The qudy Spce H 2 ={f D) = Eeneliiies sy fT |f<rc>|2dm<c)<oo}

={f € I*(T): f(n) = 0whenn < —1,f = ¥ f(n){"}

= Definition v3 (Identify with bdry fcts + no negative Fourier coeff.)

Since f = Ya,z" € H%, we know a lot more about the bdry fct { = f({):

Theorem Let f = Ya,z" in H?. Then

i. lir?_f (r{) = f({) exists m-a.e. { € T.
Y d
ii. The boundary fct { » f({) belongs to L*(T)
Fourier coeffs iii. Ifn > 0’ then f(n) = dp.

A /
f(n) of the bdry ~
fet £(0) = Ya,¢" Ifn < -1, then f(n) = 0.

iv. [IflII* = Zazolanl® = sup [ IfrDI2dm() = [; If(DI*dm({)

0<r<i




The Hardy space H*

. Takeaways H? = {f:D - C analytic : ¥|a,|? < oo, where f(z) = Ya,z"}

= {f: D — C analytic : sup IE |f(rO)|2dm(Q) < 00}

0<r<i

={f € I*(T): f(n) = 0whenn < —1,f = ¥ f(n){"} —

= We can embed H?(ID) into L?(T) via its bdry fct, giving us

2 < > 12
H*(D) Identified via 1*(Np)
Fourier coeff.
Identify H? with its
bdry fct, then embed and
Identified via
Fourier coeff.
L*(T) - ~ 12(Z)

Also, since

via bdry fcts

I? = H? @ (H?

1117 = Xn=olanl® = sup [ IfrOI?dm({) = [} 1f(DI*dm(Q),

0<r<1

we abuse notation and write || f|| for both the norm on H?(ID) and L?(T).

®




Non-tangential limits

= Fatou’s theorem can be extended from radial limits to non-tangential [imits

Definition For a function f:ID - Cand { € T, we say that f(z)

approaches L € C non-tangentially, denoted

L= z«lim f(2),
z—(
if f(z) - L holds whenever z — ( in every fixed Stolz domain I, ()

[()=1{zeD: |z -] <a(l —Iz])}, a>1
The Stolz domain I'; 5(1)
(Taken from Figure 1.3 of book)

€



Important classes of fcts in H?

= Cauchy Kernel c;

c;(z) = —, where 1 € D.
Az

= Properties

1

* f(A) = {f, ca). In particular, |3 [I* = (e, ©2) = A(D) = 777

= {c; : 1 € D} is linearly independent
« V{cy: 1 € D} = H?

= Let A c D have an accumulation point ,then V{c; : 1 € A} = H?




Important classes of fcts in H?

= Bounded analytic functions on D, H* (D) We can prove H* c H?

_ by using the bdd integral
H* = {f: D — Canalytic : [|f]le = suplf(2)] } means defn of H?

z€eD

= E.g. M6bius transformations 7, , belong to H®
T¢,q IS a bijection from D

a —z to D, and from T to T.
a€D,JeT

T{,a(z) =

1 —az

= Definition A function u € H®is an inner function if [u({)| = 1 a.e.on T.

via radial bdry limits, so |u(z)| <1 on D by the

which exist m-a.e. by Max modulus theorem
Fatou’s theorem @



Important classes of fcts in H?

u € H%is an inner function if [u({)| = 1 a.e.on T.

A Blaschke product is a function of the form A singular inner fct is a function of the form
@ a,—z {+z
B(z) = &zN no_n s,(z) = &ex (— d )
(z) =¢z 21— oz n $ exp . (—2 1(<)

n=1

where § € T,N € Ny, and {a,,},»; € D \ {0} where § € T, and u € M, (T) with u L m

is s.t.

Z(l — lagl) <o * u 1l misusedto get|su(()| =1onT

n>1
* s, does not vanish anywhere on D
¢ — log|sﬂ| is a positive Harmonic fct ...

The zeros of B(z)/are a,, and 0 (if there is a z" term) Herglotz representation applies ... P (i) ...

The ensures that the infinite product

converges nicely, and gives us |B({)| =1on T

o




Important classes of fcts in H?

= u € H%is an inner function if |u(¢)| = 1 a.e.on T.

Blaschke product Singular inner function

B(z) = ¢z" l_[ Ianl 1az_a_zz su(a) S enp (_JT

(+zd
= u(O)

Theorem (Nevanlinna-Riesz) If u € H® is inner, then it can be written as
u(z) = B(z)s,(z)
For some Blaschke pdt B, and singular inner fct Sy

This factorization is unique up to a unimodular const.




Important classes of fcts in H?

What about factorization for f € H? ?

Blaschke product o An outer function is an analytic fct F: D — C of the form
a, Qan—72
B(z) = ézV Lt
1 lanl 1 — @,z
" F(z) = §exp (f —<p(6)dm(€)>
Singular inner function

7+ where & € T, and ¢ € L! is real-valued

su(2) = € exp (— = jdu(@) \ /

Theorem (inner-outer factorization) If f € H? \ {0}, then it can be written as
f =Bs,F

For some Blaschke pdt B, singular inner fct s, and outer fct F
Conversely, a product of this form belongs to H?.

This factorization is unique up to a unimodular const.




) Two key operators

Unilateral shift S: H> > H?
Toeplitz operator T ,: H* - H*



Key operators
« Unilateral shift operator (right shift)
S:H? - H?
(S)(2) = zf (2)

= Toeplitz operator with symbol ¢ € L™

or

- g2 2
T,:H? > H

Tcp(f) = P(¢f)

P = projection of L? onto H? (via bdry fcts)

“Riesz projection”

If f=Y,.0a,2" € H?, then

S(ag,aq,a,++) = (0,ag,a4,+)

Notethat T, =S, and T; = S*

®




T,:H* - H? S:H? > H?

Key operators T, =Pef) NG =2f(2)

= Properties of Toeplitz operators

= aTy + bTy = Tag+by * Foro,y € L7, T T, is a Toeplitz op & Ty, is

" Ty ” = llolle conjugate analytic or T, is analytic.
T =T, & =
((p )* v »=9v (i.e.if Ty, = Tz for some o € H®, orif ¢ € H™)
= (T = T-
® ®
In thi , Ty Ty = Typ-
= T, compact = ¢ =0 IS EasE Tyl ve

= Properties of the Shift operator

* Theorem (Beurling) Every non-zero subspace
= S is an isometry

o(S) =D M of H? that is invariant under S is of the form
— 2 2
. Gp(S) = @, O'C(S) = T, Gr(S) = D, O-e(S) =T M =uH
= 0,(S) =D,0.(5) =T, 0,(5) =0,0,(§) =T for some inner function u. (The choice u is

unique up to a unimodular constant.)

. . f
Simple Uses inner-outer @
eigenvalues factorization, etc...



PfGOf Ol§'|'ﬁne I/[LniLe;(z):t]\/[cl—{z,SMcM.Then
(of Beuriing's Thm) : |

Notes
: : : thm is a key ingredient for
In M © SM, extract a non-zero, inner u in the following steps Smirnov’s thm.
|lu({)| = constant m-a.e. on T (via a Fourier S. argument) « In fact, the argument to
: : : y 2 o extract u shows that
Combine T with Smirnov’s theorem and u € H<, to conclude u € H M © SM is 1D!

Show that the S-invariant subspace generated by u, equals uH?, i.e.

[u] = uH? |
 We are showing
(S) automatic, since u inner;, hence uH? closed. M = [M © SM] = uH?

(2) approx uG € uH? by uGy € [u]. Uses: Gy = G in H? and |[u| = 1 on T.
(compare this with similar results in
Bergman spaces L% and Dirichlet

Truncated Taylor series of G spaces D)
Show [u] = M
.. : : : 1 [u]
C) automatic, since M is S-invariant f
(S)au v = (f,S™u) = 0 and (S"f,u) = 0
(2) Use a Fourier S. argument. = fi=0ae.onT N

= f = 0 a.e.on T (because u inner)

(u":« A
5






Definition of Model Space K,

= Definition If v is an inner function, the model space X, is

K, = wH?)* ={f €e H*: (f,uh) = 0forall h € H?}

= Proposition The model spaces K, are precisely the proper S*-invariant subspaces of H2.

= Proposition via the identification with non-tangential bdry values, we have

K, = H* NuzH?
={f €H?: f = gzu a.e.onT,for some g € H?}




Reproducing kernels

= Reproducing kernel for K, (depends on u and A € D)

ky(z) = (1 — m‘u(z)) cy(z) = ! —1u£/’l);;(z)’ where A € D.
= This gives us
fA) ={f, k), where

= Definition Let P, be the orthogonal projection of L? onto X,,. (via non-tang. bdry values)

= Then, the kernels k; and c; are related by

k) = P,cy




Special cases of K,

If u=2z" then
s, = @t = \ (122

If u = finite Blaschke product with distinct zeros A4, -+, 4,, with

corresponding multiplicities m4, -+, m,,, then
j(‘_ (li_l).1<'< 1<l<
u = C/li . Sl=Nn1=4=mMmM;

(and so dim K, = my + -+ m,,).

1 —u(Du(z)
1 — Az

ky(z) =

Notes:
e u g K,

* For this special case,
ke, = €
* This formula is can be

extended to infinite
Blaschke pdts.

* Infact, dm¥,, < 0 &
u = finite Blaschke

product!
€



Density

= Proposition Let A € D, and u be inner.

Same as = [f A has an accumulation point ,then V{k, : 1 € A} = K,,.

for ¢y in H?

“IfY,c4(1 — |A]) = oo, then V{k, : 1 € A} = K.

= Proposition K;, N H* is dense in K,,.

= Proposition The function S*u generates X, i.e.
See Prop 8.22 of book

K, = \/{S*nu ‘> 1} for an improved result

€



Going between two model spaces

We need to know how two inner fcts u and v are related, via the inner-outer factorization.

Definition Let u and v be inner fcts.

v. .
u | v means —is inner

u and v are relatively prime, means the only common inner divisors of u and v are
const fcts with unit modulus

Lemma X, ,, = X, @ u, X, ... (extends to infinite products)

Proposition For u, v inner functions,

C —
Ky © Ky ulv The inner fcts gcd(u, v) and

Ky NKy & Kecdww) lcm(u, v) are defined in
Ky VHKy, © Kiemw) Corollary 4.8 and 4.9 of book

P iy N\
@
R/



Boundary kerneis
We know that f € K, € H? has a non-tangential limit m-a.e. on T.
But fora fixed ¢ € T, does f € K, have a non-tangential limit?

This is related to the existence of the limit of

1—u(Du(z
ky(2) = : E)Zz()E%”nHOOCHZ

as we take A — ¢ € T. The limit (if it exists) is called the boundary kernel k; € ¥C,.

Does the limit k; satisfy the reproducing kernel property at T

f@) =({fke)?

It turns out that boundary kernels are the eigenvectors of an important class of ops on K,
called Clark unitary operators. See Thm 11.4 of book.

See Thm 7.24
of book

See Thm 11.4
of book
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P,:L* > K,

The compressed shift (definition)

= Definition The compressed shift is the operator S,: K,, = K, defined by

Suf =PRSS

« S H, — K, is a compression of S: H> — H? to the subspace X, that is,

p(Sy) = Bp(S) for all analytic polys p
Ku . _
(i.e.no z)




The compressed shift (properties)

Proposition The following identity holds

Sy = CS,,C. (“the compressed shift is a complex symmetric op”)
I _SuS{kL:k()@kO

[ —S:S, =Cky® Cky =S"u® S*u
Proposition S} and S,;* converges to the zero op. in the SOT. That is,
IS2£]| = 0 and ||S;*f]| = O, asn — oo, forall f € K,,.
Proposition K,, = V{S;;*k, : n = 0}

Theorem The compressed shift S, is irreducible. That is, there are no

proper non-trivial reducing subspace for KX,, (invariant for both S, and S)).

Notes:
* Defn (Conjugation on K,,)
C:X, — K, with Cf = fzu

(via bdry fcts)
e [|—SS* = Co ® Co
e | —5°S=0

K, =V {S™u:n =1}

Think CNU contractions.



Key theorems

= Theorem (Wold Decomposition) Let T € B(H) be a contraction on a Hilbert space H.

Then we may write (uniquely!)

T=U®DK

/ AN

a unitary op a completely non-unitary contraction

(i.e. no non-trivial reducing subspace for K)

= Theorem (Sz.-Nagy-Foias) Let T be a contraction on a Hilbert space H such that

= ||T*"x|| > 0asn — oo, forall x € I,
= rank(/ — T*T) = rank(I — TT*) = 1,

Then, there exists an inner fct u such that T: H — H is unitarily equiv to S,;: K, = K. @



Proolf oufﬁne Thm Let T € B(#) with [|T|l,, < 1,T*" — 0 in the SOT,

- o and rank(I — T*T) = rank(I — TT*) = 1,
(Of szg = q gy FOIQ §) then 3 inner u such thatT = §,,.

Construct the defect operator D = +I — T*T, via the spectral thm of the (positive) SA operator I — T"T.

Embed # into H? using the isometry (hypothesis T*" - 0 in SOT used here)

®: H > H? = 12(N,)
®dx = (Dx,DTx, DT?x, )

range(®) is S*-invariant. So by Beurling’s theorem, range(®) = X, for some inner w.

Check H H

, then restrict ®’s codomain from
b d H? to K, to get a unitary operator

T
H? H?

Convert from S;; back to S, using US,U* = S

u




&) H>-functional calculus




H® - functional calculus

= Fix an inner function u.

= Definition The H*-functional calculus for S, is the mapping

A:H® - B(X,)

P = QD(Su) = PuTcp ”

i.e. p(S)f = B(¢f), for f € X,




Basic properties

= Theorem Fix an inner fct u. Then the mapping A: H* - B(¥,) is

= linear, multiplicative, a contraction (i.e. || (S|l < ll¢]lw), and Az = S,,.

= Theorem Fix an inner fct u and ¢ € H*. Then,

= (8" = T(ﬁl?(u -

= If Y s0l@(m)| < oo, then @(S,) = X150 @(n)S;} (conv in op norm)

= @(S,) =0iffo € uH®

= Theorem Fix an inner fct u and ¢ € H®. Let {¢,,},,1 € H® be s.t. sup||@, |l < 0.

- Iflim @(¢) = ¢($)

= If lim @(2) = @(2)
n—o>00

, then ¢,,(S,,) = ©(S,) in the

, then ¢,,(S,,) = ©(S,) in the

n=1

A:H®” — B(XK,)
P = QD(Su) = PuT<p %

u

an algebra
homomorphism
(but not a *-alg homo)

be careful with
adjoints! ¢ € H®

®




The specirum of S,

= Definition Let u = Bs, be a non-constant inner fct. The spectrum of u, a(u) is the set

o(u) = {aptn>1 YU supp u

The zeros of B, a,;, liein D subset of T
and may accumulate on T

= Theorem (LivSic-Moller) a(S,) = a(u)
= Corollary 0,,(S,,)) = o(u) NID = {1 € D : u(4) = 0}. The eigenvalues are simple.

= Proposition 0,.(S,,)) =a(u) NT




Some operator algebraic prope

We need some vocabulary from operator algebras.

Definition Let C*(S,,) be the unital C*-algebra generated by S,
Definition C(C*(S,)) = smallest norm closed two-sided ideal of B(#) containing all commutators
AB — BA, whereA,B € C*(S,).

Theorem For u inner, we have Need to first make sense of

C*(Syw) ={p(Sy) + K : ¢ € C(T) and K: X, » K, compact} @(S,) for a symbol ¢ € C(T)
c(C*(S,)) = {compact ops in %} as opposed to ¢ € H* (D)
5 = C(o(u) N'T) as C*-algebras c.f. Gelfand-Naimark thm

{compactopsin X,}




The spectrum of ¢(S,)

Theorem (spectral mapping) Let u be inner and ¢: D — C be analytic with

a continuous extension to D, then Notes:
» LivSic-Moller gives a(S,) = o(u)
U(¢(Su)) - go(a(Su)) =¢(o(w) * The statement on g, (¢ (S,))
needs some operator algebra

Theorem Let u be inner and ¢ € H*. Then

_ . _ * Compare with: 6(S,,) = o(u)
a(0(Sw) { inf(lu(@)| + lo(2) — D) } _ {,1 eD: lizm_)i/{lflu(z)l = 0}

Theorem (point spectrum) Let u be inner and ¢ € H*. Fix . Set
v = gcd((@ — Dinner , 1)
Then * Need to define @(S,,) first
ker(o(S,) — 1) = %7@ and ker(@(Su) _ —) - X, (c.f. “Truncated Toeplitz ops”)

So, € o, (0(SW) = 1€ ap(gB(Su)) & v =gcd((@ — Dinner, 1) is not constant @



Thank you!
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