Model spaces and the compressed shift operator

Yi Sheng Lim 05/01/2023

Goals

• Introduce the Hardy space $H^2(\mathbb{D})$ and model space $\mathcal{K}_u = (uH^2)^{\perp}$.

- Introduce key operators on the Hardy space
 - Unilateral (forward) shift $S: H^2 \rightarrow H^2$
 - Compressed shift $S_u: \mathcal{K}_u \to \mathcal{K}_u$

• H^{∞} – functional calculus $\Lambda: H^{\infty} \to \mathcal{B}(\mathcal{K}_u)$

Some notations

Sets

- $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ $z \in \mathbb{D}$
- $\label{eq:constraint} \mathbb{T} = \{z \in \mathbb{C}: \ |z| = 1\} \qquad \zeta \in \mathbb{T}$
- Closed linear span $\bigvee \mathcal{M} = \overline{\operatorname{span} \mathcal{M}}$
- Measures
 - $m = \frac{d\lambda}{2\pi}$ normalized Leb meas. on \mathbb{T}
 - $M(\mathbb{T}) = \{\text{complex Borel meas.}\}, M_+(\mathbb{T}) = \{\text{positive Borel meas.}\}$

The Hardy space $H^2(\mathbb{D})$

• Three equivalent definitions for $H^2 = H^2(\mathbb{D})$

Definition v1 (Taylor coeff.)

$$H^{2}(\mathbb{D}) = \left\{ f: \mathbb{D} \to \mathbb{C} \text{ analytic} : \sum_{n=0}^{\infty} |a_{n}|^{2} < \infty \text{ , where } f(z) = \sum_{n=0}^{\infty} a_{n} z^{n} \right\}$$

Hilbert space

<u>Definition v2 (Bounded integral means)</u>

$$H^{2}(\mathbb{D}) = \left\{ f \colon \mathbb{D} \to \mathbb{C} \text{ analytic} \colon \sup_{0 < r < 1} \int_{\mathbb{T}} |f(r\zeta)|^{2} dm(\zeta) < \infty \right\}$$

Controls growth as we approach \mathbb{T}

<u>Definition v3 (Identify with bdry fcts + no negative Fourier coeff.)</u>

$$H^{2}(\mathbb{D}) = \left\{ f \in L^{2}(\mathbb{T}) : \hat{f}(n) = 0 \text{ when } n \leq -1, \text{ where } f = \sum_{n=-\infty}^{\infty} \hat{f}(n)\zeta^{n} \right\}$$

Easier to work with bdry fcts / Fourier series

Definition v1 (Taylor coeff.)

$$H^{2}(\mathbb{D}) = \left\{ f \colon \mathbb{D} \to \mathbb{C} \text{ analytic} : \sum_{n=0}^{\infty} |a_{n}|^{2} < \infty \text{ , where } f(z) = \sum_{n=0}^{\infty} a_{n} z^{n} \right\}$$

Equip this space with inner product

$$\langle f,g \rangle = \left\langle \sum_{n \ge 0} a_n z^n, \sum_{n \ge 0} b_n z^n \right\rangle \coloneqq \sum_{n \ge 0} a_n \overline{b_n}$$

(write the corresponding norm as $\|\cdot\|$)

 $H^2 = \{f : \mathbb{D} \to \mathbb{C} \text{ analytic} : \sum |a_n|^2 < \infty, \text{ where } f(z) = \sum a_n z^n \}$

 $= \left\{ f: \mathbb{D} \to \mathbb{C} \text{ analytic} : \sup_{0 < r < 1} \int_{\mathbb{T}} |f(r\zeta)|^2 dm(\zeta) < \infty \right\}$ $= \left\{ f \in L^2(\mathbb{T}): \hat{f}(n) = 0 \text{ when } n \le -1, f = \sum \hat{f}(n)\zeta^n \right\}$

So that H^2 becomes a Hilbert space.

$$H^{2} = \{f: \mathbb{D} \to \mathbb{C} \text{ analytic} : \sum |a_{n}|^{2} < \infty, \text{ where } f(z) = \sum a_{n} z^{n} \}$$
$$= \left\{ f: \mathbb{D} \to \mathbb{C} \text{ analytic} : \sup_{0 < r < 1} \int_{\mathbb{T}} |f(r\zeta)|^{2} dm(\zeta) < \infty \right\}$$
$$= \left\{ f \in L^{2}(\mathbb{T}): \hat{f}(n) = 0 \text{ when } n \le -1, f = \sum \hat{f}(n) \zeta^{n} \right\}$$

<u>Definition v2 (Bounded integral means)</u>

$$H^{2}(\mathbb{D}) = \left\{ f \colon \mathbb{D} \to \mathbb{C} \text{ analytic} \colon \sup_{0 < r < 1} \int_{\mathbb{T}} |f(r\zeta)|^{2} dm(\zeta) < \infty \right\}$$

Now, using the fact that

$$\int_{\mathbb{T}} |f(r\zeta)|^2 dm(\zeta) = \sum_{n=0}^{\infty} |a_n|^2 r^{2n}$$

We can get

 $\begin{array}{l} \displaystyle \underline{\operatorname{Proposition}} \ \mathrm{Let} \ f: \mathbb{D} \to \mathbb{C} \ \mathrm{be \ analytic. \ Then} \ f \in H^2 \ \mathrm{iff} \ \sup_{0 < r < 1} \int_{\mathbb{T}} \ |f(r\zeta)|^2 dm(\zeta) < \infty. \end{array}$ $\begin{array}{l} \mathrm{Moreover}, \\ \\ \displaystyle \|version \ 1 \end{array} \qquad \|f\|^2 = \sup_{0 < r < 1} \int_{\mathbb{T}} \ |f(r\zeta)|^2 dm(\zeta) \end{array}$

$$\begin{aligned} H^2 &= \{f \colon \mathbb{D} \to \mathbb{C} \text{ analytic} \colon \sum |a_n|^2 < \infty, \text{ where } f(z) = \sum a_n z^n \} \\ &= \left\{ f \colon \mathbb{D} \to \mathbb{C} \text{ analytic} \colon \sup_{0 < r < 1} \int_{\mathbb{T}} |f(r\zeta)|^2 dm(\zeta) < \infty \right\} \\ &= \left\{ f \in L^2(\mathbb{T}) \colon \hat{f}(n) = 0 \text{ when } n \le -1, f = \sum \hat{f}(n) \zeta^n \right\} \end{aligned}$$

Definition v3 (Identify with bdry fcts + no negative Fourier coeff.)

$$H^{2}(\mathbb{D}) = \left\{ f \in L^{2}(\mathbb{T}) : \hat{f}(n) = 0 \text{ when } n \leq -1, \text{ where } f = \sum_{n=-\infty}^{\infty} \hat{f}(n)\zeta^{n} \right\}$$

How do we identify $f: \mathbb{D} \to \mathbb{C}$ with a function $f: \mathbb{T} \to \mathbb{C}$? We need Fatou's theorem

```
Theorem (Fatou) Let \mu \in M(\mathbb{T}) and \zeta \in \mathbb{T}. If

(D\mu)(\zeta) exists, then

\lim_{r \to 1^{-}} \mathcal{P}(\mu)(r\zeta) = (D\mu)(\zeta)

i.e. \mathcal{P}(\mu) has a finite radial limit m-a.e. on \mathbb{T}.

Symmetric Poisson integral

\mathcal{P}(\mu): \mathbb{D} \to \mathbb{C}
```

<u>Corollary</u> Let $f = \sum a_n z^n$ in H^2 . Then $\lim_{r \to 1^-} f(r\zeta) = \lim_{r \to 1^-} \mathcal{P}(fdm)(r\zeta) = f(\zeta)$ exists for *m*-a.e. $\zeta \in \mathbb{T}$.

$$\begin{aligned} H^2 &= \{f \colon \mathbb{D} \to \mathbb{C} \text{ analytic} \colon \sum |a_n|^2 < \infty, \text{where } f(z) = \sum a_n z^n \} \\ &= \left\{ f \colon \mathbb{D} \to \mathbb{C} \text{ analytic} \colon \sup_{0 < r < 1} \int_{\mathbb{T}} |f(r\zeta)|^2 dm(\zeta) < \infty \right\} \\ &= \left\{ f \in L^2(\mathbb{T}) \colon \hat{f}(n) = 0 \text{ when } n \le -1, f = \sum \hat{f}(n) \zeta^n \right\} \end{aligned}$$

Definition v3 (Identify with bdry fcts + no negative Fourier coeff.)

Since $f = \sum a_n z^n \in H^2$, we know a lot more about the bdry fct $\zeta \mapsto f(\zeta)$:

Theorem Let $f = \sum a_n z^n$ in H^2 . Then

i.
$$\lim_{r \to 1^{-}} f(r\zeta) = f(\zeta) \text{ exists } m\text{-a.e. } \zeta \in \mathbb{T}.$$

ii. The boundary fct $\zeta \mapsto f(\zeta)$ belongs to $L^{2}(\mathbb{T})$
iii. If $n \ge 0$, then $\hat{f}(n) = a_{n}$.
if $n \le -1$, then $\hat{f}(n) = 0$.
iv. $\|f\|^{2} = \sum_{n=0}^{\infty} |a_{n}|^{2} = \sup_{0 < r < 1} \int_{\mathbb{T}} |f(r\zeta)|^{2} dm(\zeta) = \int_{\mathbb{T}} |f(\zeta)|^{2} dm(\zeta)$

Fourier c $\hat{f}(n)$ of the fct $f(\zeta) =$

Takeaways

$$\begin{aligned} H^2 &= \{f \colon \mathbb{D} \to \mathbb{C} \text{ analytic} \colon \sum |a_n|^2 < \infty, \text{ where } f(z) = \sum a_n z^n \} \\ &= \left\{ f \colon \mathbb{D} \to \mathbb{C} \text{ analytic} \colon \sup_{0 < r < 1} \int_{\mathbb{T}} |f(r\zeta)|^2 dm(\zeta) < \infty \right\} \\ &= \left\{ f \in L^2(\mathbb{T}) \colon \hat{f}(n) = 0 \text{ when } n \le -1, f = \sum \hat{f}(n)\zeta^n \right\} \end{aligned}$$
 via bdry fcts

• We can embed $H^2(\mathbb{D})$ into $L^2(\mathbb{T})$ via its bdry fct, giving us

Also, since

$$||f||^{2} = \sum_{n=0}^{\infty} |a_{n}|^{2} = \sup_{0 < r < 1} \int_{\mathbb{T}} |f(r\zeta)|^{2} dm(\zeta) = \int_{\mathbb{T}} |f(\zeta)|^{2} dm(\zeta),$$

we abuse notation and write ||f|| for both the norm on $H^2(\mathbb{D})$ and $L^2(\mathbb{T})$.

Non-tangential limits

• Fatou's theorem can be extended from radial limits to *non-tangential limits*

Definition For a function $f: \mathbb{D} \to \mathbb{C}$ and $\zeta \in \mathbb{T}$, we say that f(z) approaches $L \in \mathbb{C}$ **non-tangentially**, denoted

$$L = \angle \lim_{z \to \zeta} f(z),$$

if $f(z) \to L$ holds whenever $z \to \zeta$ in every fixed Stolz domain $\Gamma_{\alpha}(\zeta)$

 $\Gamma_{\alpha}(\zeta) = \{ z \in \mathbb{D} : |z - \zeta| < \alpha(1 - |z|) \}, \qquad \alpha > 1$

The Stolz domain $\Gamma_{1.5}(1)$ (Taken from Figure 1.3 of book)

• Cauchy Kernel c_{λ}

$$c_{\lambda}(z) = \frac{1}{1 - \overline{\lambda}z}$$
, where $\lambda \in \mathbb{D}$.

Properties

•
$$f(\lambda) = \langle f, c_{\lambda} \rangle$$
. In particular, $||c_{\lambda}||^2 = \langle c_{\lambda}, c_{\lambda} \rangle = c_{\lambda}(\lambda) = \frac{1}{1 - |\lambda|^2}$.

- $\{c_{\lambda} : \lambda \in \mathbb{D}\}$ is linearly independent
- $\bigvee \{c_{\lambda} : \lambda \in \mathbb{D}\} = H^2$
- Let $\Lambda \subset \mathbb{D}$ have an accumulation point in \mathbb{D} , then $\bigvee \{c_{\lambda} : \lambda \in \Lambda\} = H^2$

• Bounded analytic functions on \mathbb{D} , $H^{\infty}(\mathbb{D})$

$$H^{\infty} = \left\{ f: \mathbb{D} \to \mathbb{C} \text{ analytic} : \|f\|_{\infty} = \sup_{z \in \mathbb{D}} |f(z)| \right\}$$

We can prove $H^{\infty} \subset H^2$ by using the bdd integral means defn of H^2

• E.g. Möbius transformations $\tau_{\zeta,a}$ belong to H^{∞}

$$\tau_{\zeta,a}(z) = \zeta \frac{a-z}{1-\bar{a}z} \qquad a \in \mathbb{D}, \zeta \in \mathbb{T}$$

 $\tau_{\zeta,a}$ is a bijection from \mathbb{D} to \mathbb{D} , and from \mathbb{T} to \mathbb{T} .

• **Definition** A function $u \in H^{\infty}$ is an **inner function** if $|u(\zeta)| = 1$ a.e. on \mathbb{T} .

via radial bdry limits, which exist *m*-a.e. by Fatou's theorem

so $|u(z)| \le 1$ on \mathbb{D} by the Max modulus theorem

• $u \in H^{\infty}$ is an **inner function** if $|u(\zeta)| = 1$ a.e. on \mathbb{T} .

A **Blaschke product** is a function of the form $B(z) = \xi z^N \prod_{n=1}^{\infty} \frac{\overline{a_n}}{|a_n|} \frac{a_n - z}{1 - \overline{a_n}z}$

where $\xi \in \mathbb{T}, N \in \mathbb{N}_0$, and $\{a_n\}_{n \ge 1} \subset \mathbb{D} \setminus \{0\}$ is s.t.

$$\sum_{n\geq 1}(1-|a_n|)<\infty$$

- The zeros of B(z) are a_n and 0 (if there is a z^N term)
- The Blaschke condition ensures that the infinite product converges nicely, and gives us |B(ζ)| = 1 on T

A **singular inner fct** is a function of the form $s_{\mu}(z) = \xi \exp\left(-\int_{\mathbb{T}} \frac{\zeta + z}{\zeta - z} d\mu(\zeta)\right)$

where $\xi \in \mathbb{T}$, and $\mu \in M_+(\mathbb{T})$ with $\mu \perp m$

- $\mu \perp m$ is used to get $|s_{\mu}(\zeta)| = 1$ on \mathbb{T}
- s_{μ} does not vanish anywhere on \mathbb{D}
- $-\log|s_{\mu}|$ is a positive Harmonic fct ... Herglotz representation applies ... $\mathcal{P}(\mu)$...

• $u \in H^{\infty}$ is an **inner function** if $|u(\zeta)| = 1$ a.e. on \mathbb{T} .

<u>Theorem (Nevanlinna-Riesz)</u> If $u \in H^{\infty}$ is inner, then it can be written as

$$u(z) = B(z)s_{\mu}(z)$$

For some Blaschke pdt *B*, and singular inner fct s_{μ} .

This factorization is unique up to a unimodular const.

• What about factorization for $f \in H^2$?

Blaschke product

$$B(z) = \xi z^N \prod_{n=1}^{\infty} \frac{\overline{a_n}}{|a_n|} \frac{a_n - z}{1 - \overline{a_n} z}$$

Singular inner function

S

$$_{\mu}(z) = \xi \exp\left(-\int_{\mathbb{T}} \frac{\zeta + z}{\zeta - z} d\mu(\zeta)\right)$$

An **outer function** is an analytic fct $F: \mathbb{D} \to \mathbb{C}$ of the form

$$F(z) = \xi \exp\left(\int_{\mathbb{T}} \frac{\zeta + z}{\zeta - z} \varphi(\zeta) dm(\zeta)\right)$$

where $\xi \in \mathbb{T}$, and $\varphi \in L^1$ is real-valued

<u>Theorem (inner-outer factorization)</u> If $f \in H^2 \setminus \{0\}$, then it can be written as

$$f = B s_{\mu} F$$

For some Blaschke pdt *B*, singular inner fct s_{μ} , and outer fct $F \in H^2$.

Conversely, a product of this form belongs to H^2 .

This factorization is unique up to a unimodular const.

Two key operators

Unilateral shift $S: H^2 \to H^2$ **Toeplitz operator** T_{φ} : $H^2 \rightarrow H^2$

Key operators

Unilateral shift operator (right shift)

If $f = \sum_{n \ge 0} a_n z^n \in H^2$, then $S: H^2 \to H^2$ or $S(a_0, a_1, a_2, \cdots) = (0, a_0, a_1, \cdots)$ (Sf)(z) = zf(z)• Toeplitz operator with symbol $\varphi \in L^{\infty}$ $T_{\varphi}: H^2 \to H^2$ Note that $T_z = S$, and $T_{\bar{z}} = S^*$ $T_{\varphi}(f) = P(\varphi f)$ P =projection of L^2 onto H^2 (via bdry fcts)

"Riesz projection"

Key operators

- Properties of Toeplitz operators
 - $aT_{\varphi} + bT_{\psi} = T_{a\varphi+b\psi}$
 - $\bullet \ \left\| T_{\varphi} \right\| = \| \varphi \|_{\infty}$
 - $T_{\varphi} = T_{\psi} \iff \varphi = \psi$
 - $\quad \left(T_{\varphi}\right)^* = T_{\overline{\varphi}}$
 - $T_{\varphi} \operatorname{compact} \Leftrightarrow \varphi = 0$
- Properties of the Shift operator
 - *S* is an isometry
 - $\sigma(S) = \overline{\mathbb{D}}$

•
$$\sigma_p(S) = \emptyset, \sigma_c(S) = \mathbb{T}, \sigma_r(S) = \mathbb{D}, \sigma_e(S) = \mathbb{T}$$

•
$$\sigma_p(S^*) = \mathbb{D}, \sigma_c(S^*) = \mathbb{T}, \sigma_r(S^*) = \emptyset, \sigma_e(S^*) = \mathbb{T}$$

Simple eigenvalues $T_{\varphi}: H^2 \to H^2$ $S: H^2 \to H^2$ $T_{\varphi}(f) = P(\varphi f)$ (Sf)(z) = zf(z)

For φ, ψ ∈ L[∞], T_ψT_φ is a Toeplitz op ⇔ T_ψ is conjugate analytic or T_φ is analytic.
(i.e. if T_ψ = T_{σ̄} for some σ ∈ H[∞], or if φ ∈ H[∞]) In this case, T_ψT_φ = T_{ψφ}.

• <u>Theorem (Beurling)</u> Every non-zero subspace \mathcal{M} of H^2 that is invariant under S is of the form $\mathcal{M} = uH^2$

for some inner function *u*. (The choice *u* is unique up to a unimodular constant.)

Uses inner-outer factorization, etc...

Proof outline (of Beurling's Thm)

• \mathcal{M} non-zero $\Rightarrow S\mathcal{M} \subseteq \mathcal{M}$. So let us look at $\mathcal{M} \ominus S\mathcal{M} = \mathcal{M} \cap (S\mathcal{M})^{\perp} \neq \{0\}$

• In $\mathcal{M} \ominus S\mathcal{M}$, extract a non-zero, inner u in the following steps

- $|u(\zeta)| \equiv \text{constant } m$ -a.e. on \mathbb{T} (via a Fourier S. argument)
- Combine \uparrow with Smirnov's theorem and $u \in H^2$, to conclude $u \in H^{\infty}$

• Show that the S-invariant subspace generated by u, equals uH^2 , i.e.

$$[u] = uH^2$$

- (\subseteq) automatic, since *u* inner, hence uH^2 closed.
- (\supseteq) approx $uG \in uH^2$ by $uG_N \in [u]$. Uses: $G_N \to G$ in H^2 and $|u| \equiv 1$ on \mathbb{T} .

Truncated Taylor series of G

• Show $[u] = \mathcal{M}$

- (\subseteq) automatic, since \mathcal{M} is *S*-invariant
- (\supseteq) Use a Fourier S. argument. –

$$f \perp [u]$$

$$\Rightarrow \langle f, S^n u \rangle = 0 \text{ and } \langle S^n f, u \rangle = 0$$

$$\Rightarrow f \overline{u} = 0 \text{ a.e. on } \mathbb{T}$$

$$\Rightarrow f = 0 \text{ a.e. on } \mathbb{T} \text{ (because } u \text{ inner)}$$

<u>**Thm</u>** Let $0 \neq \mathcal{M} \subset H^2$, $S\mathcal{M} \subset \mathcal{M}$. Then $\mathcal{M} = uH^2$ for some inner *u*.</u>

Notes

- Inner-outer factorization thm is a key ingredient for Smirnov's thm.
- In fact, the argument to extract u shows that $\mathcal{M} \ominus S\mathcal{M}$ is 1D!

• We are showing $\mathcal{M} = [\mathcal{M} \ominus S\mathcal{M}] = uH^2$

(compare this with similar results in Bergman spaces L_a^2 and Dirichlet spaces \mathcal{D})

Model spaces

Definition of Model Space \mathcal{K}_u

• **Definition** If u is an inner function, the model space \mathcal{K}_u is

$$\mathcal{K}_u \coloneqq (uH^2)^{\perp} = \{ f \in H^2 : \langle f, uh \rangle = 0 \text{ for all } h \in H^2 \}$$

- **<u>Proposition</u>** The model spaces \mathcal{K}_u are precisely the proper S^* -invariant subspaces of H^2 .
- **<u>Proposition</u>** via the identification with non-tangential bdry values, we have

$$\mathcal{K}_{u} = H^{2} \cap u\overline{zH^{2}}$$
$$= \{ f \in H^{2} : f = \overline{gzu} \text{ a.e. on } \mathbb{T}, \text{ for some } g \in H^{2} \}$$

Reproducing kernels

• Reproducing kernel for \mathcal{K}_u (depends on u and $\lambda \in \mathbb{D}$)

$$k_{\lambda}(z) = \left(1 - \overline{u(\lambda)}u(z)\right)c_{\lambda}(z) = \frac{1 - \overline{u(\lambda)}u(z)}{1 - \overline{\lambda}z}, \quad \text{where } \lambda \in \mathbb{D}$$

This gives us

$$f(\lambda) = \langle f, k_{\lambda} \rangle$$
, where $f \in \mathcal{K}_u$.

- **Definition** Let P_u be the orthogonal projection of L^2 onto \mathcal{K}_u . (via non-tang. bdry values)
- Then, the kernels k_{λ} and c_{λ} are related by

$$k_{\lambda} = P_u c_{\lambda}$$

Special cases of \mathcal{K}_u

• If $u = z^n$, then

$$\mathcal{K}_u = (z^n H^2)^{\perp} = \bigvee \{1, z, \cdots, z^{n-1}\}$$

• If u = finite Blaschke product with distinct zeros $\lambda_1, \dots, \lambda_n$ with corresponding multiplicities m_1, \dots, m_n , then

$$\mathcal{K}_{u} = \bigvee \left\{ c_{\lambda_{i}}^{(l_{i}-1)} : 1 \leq i \leq n, 1 \leq l_{i} \leq m_{i} \right\}$$

(and so dim $\mathcal{K}_u = m_1 + \cdots + m_n$).

 $k_{\lambda}(z) = \frac{1 - u(\lambda)u(z)}{1 - \overline{\lambda}z}$

Notes:

• $u \notin \mathcal{K}_u!!!$

- For this special case, $k_{\lambda_i} = c_{\lambda_i}$
- This formula is can be extended to infinite Blaschke pdts.

• In fact, dim $\mathcal{K}_u < \infty \iff$ u = finite Blaschke product!

Density

• **<u>Proposition</u>** Let $\Lambda \subset \mathbb{D}$, and u be inner.

Same as for c_{λ} in H^2 = If Λ has an accumulation point in \mathbb{D} , then $\bigvee\{k_{\lambda} : \lambda \in \Lambda\} = \mathcal{K}_u$.

If
$$\sum_{\lambda \in \Lambda} (1 - |\lambda|) = \infty$$
, then $\bigvee \{k_{\lambda} : \lambda \in \Lambda\} = \mathcal{K}_u$.

- **<u>Proposition</u>** $\mathcal{K}_u \cap H^{\infty}$ is dense in \mathcal{K}_u .
- **<u>Proposition</u>** The function S^*u generates \mathcal{K}_u , i.e.

$$\mathcal{K}_u = \bigvee \{S^{*n}u : n \ge 1\}$$

See Prop 8.22 of book for an improved result

Going between two model spaces

- We need to know how two inner fcts *u* and *v* are related, via the inner-outer factorization.
- <u>Definition</u> Let u and v be inner fcts.
 - $u \mid v \text{ means } \frac{v}{u} \text{ is inner}$
 - *u* and *v* are relatively prime, means the only common inner divisors of *u* and *v* are const fcts with unit modulus
- Lemma $\mathcal{K}_{u_1u_2} = \mathcal{K}_{u_1} \bigoplus u_1 \mathcal{K}_{u_2} \dots$ (extends to infinite products)
- **<u>Proposition</u>** For *u*, *v* inner functions,
 - $\mathcal{K}_u \subset \mathcal{K}_v \Leftrightarrow u | v$
 - $\mathcal{K}_u \cap \mathcal{K}_v \Leftrightarrow \mathcal{K}_{gcd(u,v)}$
 - $\mathcal{K}_u \lor \mathcal{K}_v \Leftrightarrow \mathcal{K}_{\operatorname{lcm}(u,v)}$

The inner fcts gcd(u, v) and lcm(u, v) are defined in Corollary 4.8 and 4.9 of book

Boundary kernels

- We know that $f \in \mathcal{K}_u \subset H^2$ has a non-tangential limit *m*-a.e. on \mathbb{T} .
- But for a fixed $\zeta \in \mathbb{T}$, does $f \in \mathcal{H}_u$ have a non-tangential limit?
- This is related to the existence of the limit of

$$\kappa_{\lambda}(z) = \frac{1 - \overline{u(\lambda)}u(z)}{1 - \overline{\lambda}z} \in \mathcal{K}_{u} \cap H^{\infty} \subset H^{2}$$
 See Thm 7.24
of book

as we take $\lambda \to \zeta \in \mathbb{T}$. The limit (if it exists) is called the **boundary kernel** $k_{\zeta} \in \mathcal{K}_{u}$.

- Does the limit k_{ζ} satisfy the reproducing kernel property at \mathbb{T}

$$f(\zeta) = \left\langle f, k_{\zeta} \right\rangle?$$

• It turns out that boundary kernels are the eigenvectors of an important class of ops on \mathcal{K}_u , called Clark unitary operators. See Thm 11.4 of book.

See Thm 11.4 of book

The compressed shift (definition)

• **<u>Definition</u>** The compressed shift is the operator $S_u: \mathcal{K}_u \to \mathcal{K}_u$ defined by

$$S_u f = P_u S f$$

• $S_u: \mathcal{K}_u \to \mathcal{K}_u$ is a compression of $S: H^2 \to H^2$ to the subspace \mathcal{K}_u , that is,

$$p(S_u) = P_u p(S) \Big|_{\mathcal{K}_u}$$

for all analytic polys p(i.e. no \overline{z}^n)

 $P_{u}: L^{2} \to \mathcal{K}_{u}$

The compressed shift (properties)

- <u>Proposition</u> The following identity holds
 - $S_u = CS_u^*C$. ("the compressed shift is a complex symmetric op")
 - $I S_u S_u^* = k_0 \otimes k_0$
 - $I S_u^* S_u = Ck_0 \otimes Ck_0 = S^* u \otimes S^* u$
- **<u>Proposition</u>** S_u^n and S_u^{*n} converges to the zero op. in the SOT. That is,

 $||S_u^n f|| \to 0 \text{ and } ||S_u^{*n} f|| \to 0, \quad as \ n \to \infty, \text{ for all } f \in \mathcal{K}_u.$

- **<u>Proposition</u>** $\mathcal{K}_u = \bigvee \{S_u^{*n} k_0 : n \ge 0\}$
- <u>Theorem</u> The compressed shift S_u is irreducible. That is, there are no proper non-trivial reducing subspace for \mathcal{K}_u (invariant for both S_u and S_u^*).

Notes:

• **<u>Defn</u>** (Conjugation on \mathcal{K}_u)

 $C: \mathcal{K}_u \to \mathcal{K}_u$ with $Cf = \overline{fzu}$ (via bdry fcts)

$$I - SS^* = c_0 \otimes c_0$$

• $I - S^*S = 0$

- $\mathcal{K}_u = \forall \{S^{*n}u : n \ge 1\}$
- Think CNU contractions.

Key theorems

• <u>Theorem</u> (Wold Decomposition) Let $T \in \mathcal{B}(\mathcal{H})$ be a contraction on a Hilbert space \mathcal{H} . Then we may write (uniquely!)

• <u>Theorem</u> (Sz.-Nagy-Foiaș) Let T be a contraction on a Hilbert space \mathcal{H} such that

- $||T^{*n}x|| \to 0$ as $n \to \infty$, for all $x \in \mathcal{H}$,
- $rank(I T^*T) = rank(I TT^*) = 1$,

Then, there exists an inner fct u such that $T: \mathcal{H} \to \mathcal{H}$ is unitarily equiv to $S_u: \mathcal{K}_u \to \mathcal{K}_u$.

Proof outline (of Sz.-Nagy-Foiaș)

<u>**Thm</u>** Let $T \in \mathcal{B}(\mathcal{H})$ with $||T||_{op} \leq 1, T^{*n} \to 0$ in the SOT, and rank $(I - T^*T) = \operatorname{rank}(I - TT^*) = 1$, then \exists inner u such that $T \cong S_u$.</u>

• Construct the defect operator $D = \sqrt{I - T^*T}$, via the spectral thm of the (positive) SA operator $I - T^*T$.

• Embed \mathcal{H} into H^2 using the isometry (hypothesis $T^{*n} \rightarrow 0$ in SOT used here)

 $\Phi: \mathcal{H} \to H^2 \cong l^2(\mathbb{N}_0)$ $\Phi \mathbf{x} = (Dx, DTx, DT^2x, \cdots)$

• range(Φ) is S^* -invariant. So by **Beurling's theorem**, range(Φ) = \mathcal{K}_u for some inner u.

• Check $\mathcal{H} \longrightarrow \mathcal{H}$ $\begin{array}{c} T \\ & T \\ & \Phi \\ & T \\ H^2 \longrightarrow H^2 \end{array}$

, then restrict Φ 's codomain from H^2 to \mathcal{K}_u to get a unitary operator

• Convert from S_u^* back to S_u using $US_uU^* = S_{u^{\#}}^*$

H^{∞} -functional calculus

H^{∞} - functional calculus

- Fix an inner function *u*.
- **<u>Definition</u>** The H^{∞} -functional calculus for S_u is the mapping

$$\Lambda: H^{\infty} \to \mathcal{B}(\mathcal{K}_{u})$$
$$\varphi \mapsto \varphi(S_{u}) \coloneqq P_{u}T_{\varphi}\Big|_{\mathcal{K}_{u}}$$

i.e. $\varphi(S_u)f = P_u(\varphi f)$, for $f \in \mathcal{K}_u$.

Basic properties

• <u>**Theorem</u>** Fix an inner fct u. Then the mapping $\Lambda: H^{\infty} \to \mathcal{B}(\mathcal{K}_u)$ is</u>

• linear, multiplicative, a contraction (i.e. $\|\varphi(S_u)\| \le \|\varphi\|_{\infty}$), and $\Lambda z = S_u$.

- **<u>Theorem</u>** Fix an inner fct u and $\varphi \in H^{\infty}$. Then,
 - $\varphi(S_u)^* = T_{\overline{\varphi}}|_{\mathcal{K}_u}$
 - If $\sum_{n\geq 0} |\hat{\varphi}(n)| < \infty$, then $\varphi(S_u) = \sum_{n\geq 0} \hat{\varphi}(n) S_u^n$ (conv in op norm)
 - $\varphi(S_u) = 0$ iff $\varphi \in uH^{\infty}$ (the symbol is not unique! Unlike Toeplitz ops.)
- <u>**Theorem</u>** Fix an inner fct u and $\varphi \in H^{\infty}$. Let $\{\varphi_n\}_{n \ge 1} \subset H^{\infty}$ be s.t. $\sup_{n \ge 1} \|\varphi_u\|_{\infty} < \infty$.</u>
 - If $\lim_{n \to \infty} \varphi(\zeta) = \varphi(\zeta)$ a.e. on \mathbb{T} , then $\varphi_n(S_u) \to \varphi(S_u)$ in the SOT.
 - If $\lim_{n \to \infty} \varphi(z) = \varphi(z)$ for all $z \in \mathbb{D}$, then $\varphi_n(S_u) \to \varphi(S_u)$ in the WOT.

$$\Lambda: H^{\infty} \to \mathcal{B}(\mathcal{K}_{u})$$
$$\varphi \mapsto \varphi(S_{u}) \coloneqq P_{u}T_{\varphi}\Big|_{\mathcal{K}_{u}}$$

an algebra homomorphism (but not a *-alg homo)

be careful with adjoints! $\bar{\varphi} \notin H^{\infty}$

The spectrum of S_u

• **Definition** Let $u = Bs_{\mu}$ be a non-constant inner fct. The **spectrum of** u, $\sigma(u)$ is the set

$$\sigma(u) = \overline{\{a_n\}}_{n \ge 1} \cup \operatorname{supp} \mu$$

The zeros of *B*, a_n , lie in \mathbb{D} and may accumulate on \mathbb{T}

subset of \mathbb{T}

• <u>Theorem</u> (Livšic-Möller) $\sigma(S_u) = \sigma(u)$

• <u>Corollary</u> $\sigma_p(S_u) = \sigma(u) \cap \mathbb{D} = \{\lambda \in \mathbb{D} : u(\lambda) = 0\}$. The eigenvalues are simple.

• **<u>Proposition</u>** $\sigma_e(S_u) = \sigma(u) \cap \mathbb{T}$

Some operator algebraic properties

- We need some vocabulary from operator algebras.
- **Definition** Let $C^*(S_u)$ be the unital C^* -algebra generated by S_u
- <u>Definition</u> $C(C^*(S_u))$ = smallest norm closed two-sided ideal of $\mathcal{B}(\mathcal{H})$ containing all commutators

AB - BA, where $A, B \in C^*(S_u)$.

- <u>**Theorem</u>** For *u* inner, we have</u>
 - $C^*(S_u) = \{\varphi(S_u) + K : \varphi \in C(\mathbb{T}) \text{ and } K : \mathcal{K}_u \to \mathcal{K}_u \text{ compact} \}$
 - $\mathcal{C}(\mathcal{C}^*(S_u)) = \{\text{compact ops in } \mathcal{K}_u\}$

• $\frac{C^*(S_u)}{\{\text{compact ops in } \mathcal{K}_u\}} \cong C(\sigma(u) \cap \mathbb{T}) \text{ as } C^*\text{-algebras}$

Need to first make sense of $\varphi(S_u)$ for a symbol $\varphi \in C(\mathbb{T})$ as opposed to $\varphi \in H^{\infty}(\mathbb{D})$

c.f. Gelfand-Naimark thm

The spectrum of $\varphi(S_u)$

- <u>Theorem</u> (spectral mapping) Let u be inner and $\varphi : \mathbb{D} \to \mathbb{C}$ be analytic with a continuous extension to $\overline{\mathbb{D}}$, then
 - $\sigma(\varphi(S_u)) = \varphi(\sigma(S_u)) = \varphi(\sigma(u))$
 - $\sigma_e(\varphi(S_u)) = \varphi(\sigma_e(S_u)) = \varphi(\sigma(u) \cap \mathbb{T})$
- <u>**Theorem</u>** Let u be inner and $\varphi \in H^{\infty}$. Then</u>

$$\sigma(\varphi(S_u)) = \left\{ \lambda \in \mathbb{C} : \inf_{z \in \mathbb{D}} (|u(z)| + |\varphi(z) - \lambda|) = 0 \right\}$$

• <u>Theorem</u> (point spectrum) Let u be inner and $\varphi \in H^{\infty}$. Fix $\lambda \in \mathbb{C}$. Set

$$v = \gcd((\varphi - \lambda)_{inner}, u)$$

Then

$$\ker(\varphi(S_u) - \lambda) = \frac{u}{v} \mathcal{K}_v \quad \text{and} \quad \ker(\bar{\varphi}(S_u) - \bar{\lambda}) = \mathcal{K}_v \qquad (\text{c.f. "Truncated Toep})$$

So, $\lambda \in \sigma_p(\varphi(S_u)) \quad \Leftrightarrow \quad \bar{\lambda} \in \sigma_p(\bar{\varphi}(S_u)) \quad \Leftrightarrow \quad v = \gcd((\varphi - \lambda)_{\text{inner}}, u) \text{ is not constant}$

Notes:

- Livšic-Möller gives $\sigma(S_u) = \sigma(u)$
- The statement on $\sigma_e(\varphi(S_u))$ needs some operator algebra machinery
- Compare with: $\sigma(S_u) = \sigma(u)$ = $\left\{ \lambda \in \overline{\mathbb{D}} : \liminf_{z \to \lambda} |u(z)| = 0 \right\}$

• Need to define $\overline{\varphi}(S_u)$ first (c.f. "Truncated Toeplitz ops")

Cambridge studies in advanced mathematics

Introduction to Model Spaces and their Operators

148

STEPHAN RAMON GARCIA JAVAD MASHREGHI WILLIAM T. ROSS