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▪ Introduce the Hardy space 𝐻2(𝔻) and model 

space 𝒦𝑢 = 𝑢𝐻2 ⊥.

▪ Introduce key operators on the Hardy space

▪ Unilateral (forward) shift 𝑆: 𝐻2 → 𝐻2

▪ Compressed shift 𝑆𝑢: 𝒦𝑢 → 𝒦𝑢

▪ 𝐻∞ − functional calculus Λ: 𝐻∞ → ℬ(𝒦𝑢)



▪ Sets

▪ 𝔻 = {𝑧 ∈ ℂ ∶ 𝑧 < 1 } 𝑧 ∈ 𝔻

▪ 𝕋 = 𝑧 ∈ ℂ ∶ 𝑧 = 1 𝜁 ∈ 𝕋

▪ Closed linear span ڀ ℳ = span ℳ

▪ Measures

▪ 𝑚 =
𝑑𝜆

2𝜋
normalized Leb meas. on 𝕋

▪ 𝑀 𝕋 = complex Borel meas. , 𝑀+ 𝕋 = positive Borel meas.





▪ Three equivalent definitions for 𝐻2 = 𝐻2 𝔻

Definition v1 (Taylor coeff.)

Definition v2 (Bounded integral means)

Definition v3 (Identify with bdry fcts + no negative Fourier coeff.)

𝐻2 𝔻 = 𝑓: 𝔻 → ℂ analytic ∶ 

𝑛=0

∞

𝑎𝑛
2 < ∞ , where 𝑓 𝑧 = 

𝑛=0

∞

𝑎𝑛𝑧𝑛

𝐻2 𝔻 = 𝑓: 𝔻 → ℂ analytic ∶ sup
0<𝑟<1

න
𝕋

𝑓 𝑟𝜁 2𝑑𝑚 𝜁 < ∞

𝐻2 𝔻 = 𝑓 ∈ 𝐿2 𝕋 : መ𝑓 𝑛 = 0 when 𝑛 ≤ −1, where 𝑓 = 

𝑛=−∞

∞

መ𝑓 𝑛 𝜁𝑛

Hilbert space

Controls growth 
as we approach 
𝕋

Easier to work with 
bdry fcts / Fourier 
series



▪ Definition v1 (Taylor coeff.)

Equip this space with inner product

So that 𝐻2 becomes a Hilbert space.

𝐻2 𝔻 = 𝑓: 𝔻 → ℂ analytic ∶ 

𝑛=0

∞

𝑎𝑛
2 < ∞ , where 𝑓 𝑧 = 

𝑛=0

∞

𝑎𝑛𝑧𝑛

𝑓, 𝑔 = 

𝑛≥0

𝑎𝑛𝑧𝑛 , 

𝑛≥0

𝑏𝑛𝑧𝑛 ≔ 

𝑛≥0

𝑎𝑛𝑏𝑛

(write the 
corresponding 
norm as ⋅ )

𝐻2 = 𝑓: 𝔻 → ℂ analytic ∶ ∑ 𝑎𝑛
2 < ∞, where 𝑓 𝑧 = ∑𝑎𝑛𝑧𝑛

= 𝑓: 𝔻 → ℂ analytic ∶ sup
0<𝑟<1

න
𝕋

𝑓 𝑟𝜁 2𝑑𝑚 𝜁 < ∞

= 𝑓 ∈ 𝐿2 𝕋 : መ𝑓 𝑛 = 0 when 𝑛 ≤ −1, 𝑓 = ∑ መ𝑓 𝑛 𝜁𝑛



Proposition Let 𝑓: 𝔻 → ℂ be analytic. Then 𝑓 ∈ 𝐻2 iff sup
0<𝑟<1

𝕋
𝑓 𝑟𝜁 2𝑑𝑚(𝜁) < ∞. 

Moreover,

𝑓 2 = sup
0<𝑟<1

න
𝕋

𝑓 𝑟𝜁 2𝑑𝑚(𝜁)

▪ Definition v2 (Bounded integral means)

Now, using the fact that 

We can get

𝐻2 = 𝑓: 𝔻 → ℂ analytic ∶ ∑ 𝑎𝑛
2 < ∞, where 𝑓 𝑧 = ∑𝑎𝑛𝑧𝑛

= 𝑓: 𝔻 → ℂ analytic ∶ sup
0<𝑟<1

න
𝕋

𝑓 𝑟𝜁 2𝑑𝑚 𝜁 < ∞

= 𝑓 ∈ 𝐿2 𝕋 : መ𝑓 𝑛 = 0 when 𝑛 ≤ −1, 𝑓 = ∑ መ𝑓 𝑛 𝜁𝑛

𝐻2 𝔻 = 𝑓: 𝔻 → ℂ analytic ∶ sup
0<𝑟<1

න
𝕋

𝑓 𝑟𝜁 2𝑑𝑚 𝜁 < ∞

න
𝕋

𝑓 𝑟𝜁 2𝑑𝑚 𝜁 = 

𝑛=0

∞

𝑎𝑛
2𝑟2𝑛

version 1



▪ Definition v3 (Identify with bdry fcts + no negative Fourier coeff.)

How do we identify 𝑓: 𝔻 → ℂ with a function 𝑓: 𝕋 → ℂ ? We need Fatou’s theorem

𝐻2 = 𝑓: 𝔻 → ℂ analytic ∶ ∑ 𝑎𝑛
2 < ∞, where 𝑓 𝑧 = ∑𝑎𝑛𝑧𝑛

= 𝑓: 𝔻 → ℂ analytic ∶ sup
0<𝑟<1

න
𝕋

𝑓 𝑟𝜁 2𝑑𝑚 𝜁 < ∞

= 𝑓 ∈ 𝐿2 𝕋 : መ𝑓 𝑛 = 0 when 𝑛 ≤ −1, 𝑓 = ∑ መ𝑓 𝑛 𝜁𝑛

𝐻2 𝔻 = 𝑓 ∈ 𝐿2 𝕋 : መ𝑓 𝑛 = 0 when 𝑛 ≤ −1, where 𝑓 = 

𝑛=−∞

∞

መ𝑓 𝑛 𝜁𝑛

Theorem (Fatou) Let 𝜇 ∈ 𝑀(𝕋) and 𝜁 ∈ 𝕋. If 

𝐷𝜇 (𝜁) exists, then

lim
𝑟→1−

𝒫 𝜇 𝑟𝜁 = 𝐷𝜇 (𝜁)

i.e. 𝒫 𝜇 has a finite radial limit 𝑚-a.e. on 𝕋.

Corollary Let 𝑓 = ∑𝑎𝑛𝑧𝑛 in 𝐻2. Then 

lim
𝑟→1−

𝑓 𝑟𝜁 = lim
𝑟→1−

𝒫(𝑓𝑑𝑚) 𝑟𝜁 = 𝑓(𝜁)

exists for 𝑚-a.e. 𝜁 ∈ 𝕋.

Symmetric 

derivative

Poisson integral 

𝒫 𝜇 : 𝔻 → ℂ



▪ Definition v3 (Identify with bdry fcts + no negative Fourier coeff.)

Since 𝑓 = ∑𝑎𝑛𝑧𝑛 ∈ 𝐻2, we know a lot more about the bdry fct 𝜁 ↦ 𝑓 𝜁 :

𝐻2 = 𝑓: 𝔻 → ℂ analytic ∶ ∑ 𝑎𝑛
2 < ∞, where 𝑓 𝑧 = ∑𝑎𝑛𝑧𝑛

= 𝑓: 𝔻 → ℂ analytic ∶ sup
0<𝑟<1

න
𝕋

𝑓 𝑟𝜁 2𝑑𝑚 𝜁 < ∞

= 𝑓 ∈ 𝐿2 𝕋 : መ𝑓 𝑛 = 0 when 𝑛 ≤ −1, 𝑓 = ∑ መ𝑓 𝑛 𝜁𝑛

Theorem Let 𝑓 = ∑𝑎𝑛𝑧𝑛 in 𝐻2. Then

i. lim
𝑟→1−

𝑓 𝑟𝜁 = 𝑓(𝜁) exists 𝑚-a.e. 𝜁 ∈ 𝕋.

ii. The boundary fct 𝜁 ↦ 𝑓(𝜁) belongs to 𝐿2(𝕋)

iii. If 𝑛 ≥ 0, then መ𝑓 𝑛 = an.

If 𝑛 ≤ −1, then መ𝑓 𝑛 = 0.

iv. 𝑓 2 = ∑𝑛=0
∞ 𝑎𝑛

2 = sup
0<𝑟<1

𝕋
𝑓 𝑟𝜁 2𝑑𝑚(𝜁) = 𝕋

𝑓 𝜁 2𝑑𝑚(𝜁)

Fourier coeffs
መ𝑓(𝑛) of the bdry

fct 𝑓 𝜁 = ∑𝑎𝑛𝜁𝑛



▪ Takeaways 

▪ We can embed 𝐻2 𝔻 into 𝐿2(𝕋) via its bdry fct, giving us

Also, since

we abuse notation and write 𝑓 for both the norm on 𝐻2(𝔻) and 𝐿2 𝕋 .

𝐻2 = 𝑓: 𝔻 → ℂ analytic ∶ ∑ 𝑎𝑛
2 < ∞, where 𝑓 𝑧 = ∑𝑎𝑛𝑧𝑛

= 𝑓: 𝔻 → ℂ analytic ∶ sup
0<𝑟<1

න
𝕋

𝑓 𝑟𝜁 2𝑑𝑚 𝜁 < ∞

= 𝑓 ∈ 𝐿2 𝕋 : መ𝑓 𝑛 = 0 when 𝑛 ≤ −1, 𝑓 = ∑ መ𝑓 𝑛 𝜁𝑛

and         𝐿2 = 𝐻2 ⊕ 𝜁𝐻2

𝑓 2 = ∑𝑛=0
∞ 𝑎𝑛

2 = sup
0<𝑟<1

𝕋
𝑓 𝑟𝜁 2𝑑𝑚(𝜁) = 𝕋

𝑓 𝜁 2𝑑𝑚(𝜁),

𝐻2 𝔻 𝑙2(ℕ0)

𝐿2(𝕋) 𝑙2(ℤ)

Identified via 

Fourier coeff.

Identified via 

Fourier coeff.

Identify 𝐻2 with its 

bdry fct, then embed

via bdry fcts



▪ Fatou’s theorem can be extended from radial limits to non-tangential limits

Definition For a function 𝑓: 𝔻 → ℂ and 𝜁 ∈ 𝕋, we say that 𝑓(𝑧)

approaches 𝐿 ∈ ℂ non-tangentially, denoted

𝐿 = ∠ lim
𝑧→𝜁

𝑓(𝑧) ,

if 𝑓 𝑧 → 𝐿 holds whenever 𝑧 → 𝜁 in every fixed Stolz domain Γ𝛼(𝜁)

Γ𝛼 𝜁 = 𝑧 ∈ 𝔻 ∶ 𝑧 − 𝜁 < 𝛼(1 − 𝑧 ) , 𝛼 > 1
The Stolz domain Γ1.5(1)
(Taken from Figure 1.3 of book)



▪ Cauchy Kernel 𝑐𝜆

▪ Properties

▪ 𝑓 𝜆 = 𝑓, 𝑐𝜆 . In particular, 𝑐𝜆
2 = 𝑐𝜆, 𝑐𝜆 = 𝑐𝜆 𝜆 =

1

1 − 𝜆 2.

▪ 𝑐𝜆 ∶ 𝜆 ∈ 𝔻 is linearly independent

▪ ڀ 𝑐𝜆 ∶ 𝜆 ∈ 𝔻 = 𝐻2

▪ Let Λ ⊂ 𝔻 have an accumulation point in 𝔻, then ڀ 𝑐𝜆 ∶ 𝜆 ∈ Λ = 𝐻2

𝑐𝜆 𝑧 =
1

1 − ҧ𝜆𝑧
, where 𝜆 ∈ 𝔻.



▪ Bounded analytic functions on 𝔻, 𝐻∞(𝔻)

▪ E.g. Möbius transformations 𝜏𝜁,𝑎 belong to 𝐻∞

▪ Definition A function 𝑢 ∈ 𝐻∞is an inner function if 𝑢(𝜁) = 1 a.e. on 𝕋.

𝐻∞ = 𝑓: 𝔻 → ℂ analytic ∶ 𝑓 ∞ = sup
𝑧∈𝔻

𝑓(𝑧)

𝜏𝜁,𝑎 𝑧 = 𝜁
𝑎 − 𝑧

1 − ത𝑎𝑧
𝑎 ∈ 𝔻, 𝜁 ∈ 𝕋

via radial bdry limits, 
which exist 𝑚-a.e. by 
Fatou’s theorem

so 𝑢(𝑧) ≤ 1 on 𝔻 by the 
Max modulus theorem

We can prove 𝐻∞ ⊂ 𝐻2

by using the bdd integral 
means defn of 𝐻2

𝜏𝜁,𝑎 is a bijection from 𝔻

to 𝔻, and from 𝕋 to 𝕋.



• The zeros of 𝐵(𝑧) are 𝑎𝑛 and 0 (if there is a 𝑧𝑁 term)

• The Blaschke condition ensures that the infinite product 

converges nicely, and gives us 𝐵(𝜁) = 1 on 𝕋

▪ 𝑢 ∈ 𝐻∞is an inner function if 𝑢(𝜁) = 1 a.e. on 𝕋.

A Blaschke product is a function of the form

𝐵 𝑧 = 𝜉𝑧𝑁 ෑ

𝑛=1

∞
𝑎𝑛

𝑎𝑛

𝑎𝑛 − 𝑧

1 − 𝑎𝑛𝑧

where 𝜉 ∈ 𝕋, 𝑁 ∈ ℕ0, and 𝑎𝑛 𝑛≥1 ⊂ 𝔻 ∖ 0
is s.t.



𝑛≥1

(1 − 𝑎𝑛 ) < ∞

A singular inner fct is a function of the form

𝑠𝜇 𝑧 = 𝜉 exp − න
𝕋

𝜁 + 𝑧

𝜁 − 𝑧
𝑑𝜇(𝜁)

where 𝜉 ∈ 𝕋, and 𝜇 ∈ 𝑀+(𝕋) with 𝜇 ⊥ 𝑚

• 𝜇 ⊥ 𝑚 is used to get 𝑠𝜇(𝜁) = 1 on 𝕋

• 𝑠𝜇 does not vanish anywhere on 𝔻

• − log 𝑠𝜇 is a positive Harmonic fct … 

Herglotz representation applies … 𝒫(𝜇) ...



▪ 𝑢 ∈ 𝐻∞is an inner function if 𝑢(𝜁) = 1 a.e. on 𝕋.

Blaschke product

𝐵 𝑧 = 𝜉𝑧𝑁 ෑ

𝑛=1

∞
𝑎𝑛

𝑎𝑛

𝑎𝑛 − 𝑧

1 − 𝑎𝑛𝑧

Singular inner function

𝑠𝜇 𝑧 = 𝜉 exp − න
𝕋

𝜁 + 𝑧

𝜁 − 𝑧
𝑑𝜇(𝜁)

Theorem (Nevanlinna-Riesz) If 𝑢 ∈ 𝐻∞ is inner, then it can be written as

𝑢 𝑧 = 𝐵 𝑧 𝑠𝜇(𝑧)

For some Blaschke pdt 𝐵, and singular inner fct 𝑠𝜇 .

This factorization is unique up to a unimodular const.



▪ What about factorization for 𝑓 ∈ 𝐻2 ?

Blaschke product

𝐵 𝑧 = 𝜉𝑧𝑁 ෑ

𝑛=1

∞
𝑎𝑛

𝑎𝑛

𝑎𝑛 − 𝑧

1 − 𝑎𝑛𝑧

Singular inner function

𝑠𝜇 𝑧 = 𝜉 exp − න
𝕋

𝜁 + 𝑧

𝜁 − 𝑧
𝑑𝜇(𝜁)

An outer function is an analytic fct 𝐹: 𝔻 → ℂ of the form

𝐹 𝑧 = 𝜉 exp න
𝕋

𝜁 + 𝑧

𝜁 − 𝑧
𝜑(𝜁)𝑑𝑚(𝜁)

where 𝜉 ∈ 𝕋, and 𝜑 ∈ 𝐿1 is real-valued

Theorem (inner-outer factorization) If 𝑓 ∈ 𝐻2 ∖ 0 , then it can be written as

𝑓 = 𝐵𝑠𝜇𝐹

For some Blaschke pdt 𝐵, singular inner fct 𝑠𝜇 , and outer fct 𝐹 ∈ 𝑯𝟐.

Conversely, a product of this form belongs to 𝐻2.

This factorization is unique up to a unimodular const.



Unilateral shift 𝑺: 𝑯𝟐 → 𝑯𝟐

Toeplitz operator 𝑻𝝋: 𝑯𝟐 → 𝑯𝟐



▪ Unilateral shift operator (right shift)

▪ Toeplitz operator with symbol 𝜑 ∈ 𝐿∞

𝑆: 𝐻2 → 𝐻2

𝑆𝑓 𝑧 = 𝑧𝑓(𝑧)

𝑇𝜑: 𝐻2 → 𝐻2

𝑇𝜑 𝑓 = 𝑃(𝜑𝑓)

𝑃 = projection of 𝐿2 onto 𝐻2 (via bdry fcts)

“Riesz projection”

If 𝑓 = ∑𝑛≥0 𝑎𝑛𝑧𝑛 ∈ 𝐻2, then

𝑆 𝑎0, 𝑎1, a2, ⋯ = (0, a0, 𝑎1, ⋯ )
or

Note that 𝑇𝑧 = 𝑆, and 𝑇 ҧ𝑧 = 𝑆∗



▪ Properties of Toeplitz operators

▪ 𝑎𝑇𝜑 + 𝑏𝑇𝜓 = 𝑇𝑎𝜑+𝑏𝜓

▪ 𝑇𝜑 = 𝜑 ∞

▪ 𝑇𝜑 = 𝑇𝜓 ⟺ 𝜑 = 𝜓

▪ 𝑇𝜑
∗

= 𝑇ഥ𝜑

▪ 𝑇𝜑 compact ⟺ 𝜑 = 0

▪ Properties of the Shift operator

▪ 𝑆 is an isometry

▪ 𝜎 𝑆 = ഥ𝔻

▪ 𝜎𝑝 𝑆 = ∅, 𝜎𝑐 𝑆 = 𝕋, 𝜎𝑟 𝑆 = 𝔻, 𝜎𝑒 𝑆 = 𝕋

▪ 𝜎𝑝 𝑆∗ = 𝔻, 𝜎𝑐 𝑆∗ = 𝕋, 𝜎𝑟 𝑆∗ = ∅, 𝜎𝑒 𝑆∗ = 𝕋

𝑇𝜑: 𝐻2 → 𝐻2

𝑇𝜑 𝑓 = 𝑃(𝜑𝑓)

• For 𝜑, 𝜓 ∈ 𝐿∞, 𝑇𝜓𝑇𝜑 is a Toeplitz op ⟺ 𝑇𝜓 is 

conjugate analytic or 𝑇𝜑 is analytic. 

(i.e. if 𝑇𝜓 = 𝑇ഥ𝜎 for some 𝜎 ∈ 𝐻∞, or if 𝜑 ∈ 𝐻∞)

In this case, 𝑇𝜓𝑇𝜑 = 𝑇𝜓𝜑.

𝑆: 𝐻2 → 𝐻2

𝑆𝑓 𝑧 = 𝑧𝑓(𝑧)

• Theorem (Beurling) Every non-zero subspace 

ℳ of 𝐻2 that is invariant under 𝑆 is of the form

ℳ = 𝑢𝐻2

for some inner function 𝑢. (The choice 𝑢 is    

unique up to a unimodular constant.)

Simple 
eigenvalues

Uses inner-outer 
factorization, etc…



▪ ℳ non-zero ⇒ 𝑆ℳ ⊊ ℳ. So let us look at ℳ ⊖ 𝑆ℳ = ℳ ∩ 𝑆ℳ ⊥ ≠ 0

▪ In ℳ ⊖ 𝑆ℳ, extract a non-zero, inner 𝑢 in the following steps

▪ 𝑢(𝜁) ≡ constant 𝑚-a.e. on 𝕋 (via a Fourier S. argument)

▪ Combine ↑ with Smirnov’s theorem and 𝑢 ∈ 𝐻2, to conclude 𝑢 ∈ 𝐻∞

▪ Show that the 𝑆-invariant subspace generated by 𝑢, equals 𝑢𝐻2, i.e.

▪ ⊆ automatic, since 𝑢 inner, hence 𝑢𝐻2 closed.

▪ ⊇ approx 𝑢𝐺 ∈ 𝑢𝐻2 by 𝑢𝑮𝑵 ∈ 𝑢 . Uses: 𝐺𝑁 → 𝐺 in 𝐻2 and 𝑢 ≡ 1 on 𝕋.

▪ Show 𝑢 = ℳ

▪ ⊆ automatic, since ℳ is 𝑆-invariant

▪ ⊇ Use a Fourier S. argument.

Thm Let 0 ≠ ℳ ⊂ 𝐻2, 𝑆ℳ ⊂ ℳ. Then 

ℳ = 𝑢𝐻2 for some inner 𝑢.

𝑢 = 𝑢𝐻2

Truncated Taylor series of 𝐺

𝑓 ⊥ 𝑢
⇒ 𝑓, 𝑆𝑛𝑢 = 0 and 𝑆𝑛𝑓, 𝑢 = 0
⇒ 𝑓 ത𝑢 = 0 a.e. on 𝕋
⇒ 𝑓 = 0 a.e. on 𝕋 (because 𝑢 inner)

Notes
• Inner-outer factorization 

thm is a key ingredient for 
Smirnov’s thm.

• In fact, the argument to 
extract 𝑢 shows that 
ℳ ⊖ 𝑆ℳ is 1D!

• We are showing
ℳ = ℳ ⊖ 𝑆ℳ = 𝑢𝐻2

(compare this with similar results in 
Bergman spaces 𝐿𝑎

2 and Dirichlet 
spaces 𝒟)





▪ Definition If 𝑢 is an inner function, the model space 𝒦𝑢 is

▪ Proposition The model spaces 𝒦𝑢 are precisely the proper 𝑆∗-invariant subspaces of 𝐻2.

▪ Proposition via the identification with non-tangential bdry values, we have

𝒦𝑢 ≔ 𝑢𝐻2 ⊥ = 𝑓 ∈ 𝐻2 ∶ 𝑓, 𝑢ℎ = 0 for all ℎ ∈ 𝐻2

𝒦𝑢 = 𝐻2 ∩ 𝑢𝑧𝐻2

= 𝑓 ∈ 𝐻2 ∶ 𝑓 = 𝑔𝑧𝑢 a. e. on 𝕋, for some 𝑔 ∈ 𝐻2



▪ Reproducing kernel for 𝒦𝑢 (depends on 𝑢 and 𝜆 ∈ 𝔻)

▪ This gives us

▪ Definition Let 𝑃𝑢 be the orthogonal projection of 𝐿2 onto 𝒦𝑢. (via non-tang. bdry values)

▪ Then, the kernels 𝑘𝜆 and 𝑐𝜆 are related by

𝑘𝜆 𝑧 = 1 − 𝑢 𝜆 𝑢 𝑧 𝑐𝜆(𝑧) =
1 − 𝑢 𝜆 𝑢(𝑧)

1 − ҧ𝜆𝑧
, where 𝜆 ∈ 𝔻.

𝑓(λ) = 𝑓, 𝑘𝜆 , where 𝒇 ∈ 𝓚𝒖.

𝑘𝜆 = 𝑃𝑢𝑐𝜆



▪ If 𝑢 = 𝑧𝑛, then

▪ If 𝑢 = finite Blaschke product with distinct zeros 𝜆1, ⋯ , 𝜆𝑛 with 

corresponding multiplicities 𝑚1, ⋯ , 𝑚𝑛, then

(and so dim 𝒦𝑢 = 𝑚1 + ⋯ + 𝑚𝑛).

𝑘𝜆 𝑧 =
1 − 𝑢 𝜆 𝑢(𝑧)

1 − ҧ𝜆𝑧

𝒦𝑢 = 𝑧𝑛𝐻2 ⊥ = ሧ 1, 𝑧, ⋯ , 𝑧𝑛−1

Notes:
• 𝑢 ∉ 𝒦𝑢!!!

• For this special case, 
𝑘𝜆𝑖

= 𝑐𝜆𝑖

• This formula is can be 
extended to infinite 
Blaschke pdts.

• In fact, dim 𝒦𝑢 < ∞ ⟺
𝑢 = finite Blaschke
product!

𝒦𝑢 = ሧ 𝑐𝜆𝑖

(𝑙𝑖−1)
∶ 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑙𝑖 ≤ 𝑚𝑖



▪ Proposition Let Λ ⊂ 𝔻, and u be inner.

▪ If Λ has an accumulation point in 𝔻, then ڀ 𝑘𝜆 ∶ 𝜆 ∈ Λ = 𝒦𝑢.

▪ If ∑𝜆∈Λ 1 − 𝜆 = ∞, then ڀ 𝑘𝜆 ∶ 𝜆 ∈ Λ = 𝒦𝑢.

▪ Proposition 𝒦𝑢 ∩ 𝐻∞ is dense in 𝒦𝑢.

▪ Proposition The function S∗𝑢 generates 𝒦𝑢, i.e.

Same as 
for 𝑐𝜆 in 𝐻2

𝒦𝑢 = ሧ 𝑆∗𝑛𝑢 ∶ 𝑛 ≥ 1

See Prop 8.22 of book 
for an improved result



▪ We need to know how two inner fcts 𝑢 and 𝑣 are related, via the inner-outer factorization.

▪ Definition Let u and v be inner fcts.

▪ 𝑢 | 𝑣 means 
𝑣

𝑢
is inner

▪ 𝑢 and 𝑣 are relatively prime, means the only common inner divisors of 𝑢 and v are 
const fcts with unit modulus

▪ Lemma 𝒦𝑢1𝑢2
= 𝒦𝑢1

⊕ 𝑢1𝒦𝑢2
… (extends to infinite products)

▪ Proposition For 𝑢, 𝑣 inner functions,

▪ 𝒦𝑢 ⊂ 𝒦𝑣 ⟺ 𝑢|𝑣

▪ 𝒦𝑢 ∩ 𝒦𝑣 ⟺ 𝒦gcd 𝑢,𝑣

▪ 𝒦𝑢 ∨ 𝒦𝑣 ⟺ 𝒦lcm 𝑢,𝑣

The inner fcts gcd(𝑢, 𝑣) and 
lcm(𝑢, 𝑣) are defined in 
Corollary 4.8 and 4.9 of book



▪ We know that 𝑓 ∈ 𝒦𝑢 ⊂ 𝐻2 has a non-tangential limit 𝑚-a.e. on 𝕋.

▪ But for a fixed 𝜻 ∈ 𝕋, does 𝑓 ∈ 𝒦𝑢 have a non-tangential limit?

▪ This is related to the existence of the limit of 

as we take 𝜆 → 𝜁 ∈ 𝕋. The limit (if it exists) is called the boundary kernel 𝑘𝜁 ∈ 𝒦𝑢.

▪ Does the limit 𝑘𝜁 satisfy the reproducing kernel property at 𝕋

𝑓 𝜁 = 𝑓, 𝑘𝜁 ? 

▪ It turns out that boundary kernels are the eigenvectors of an important class of ops on 𝒦𝑢, 
called Clark unitary operators. See Thm 11.4 of book.

𝑘𝜆 𝑧 =
1 − 𝑢 𝜆 𝑢(𝑧)

1 − ҧ𝜆𝑧
∈ 𝒦𝑢 ∩ 𝐻∞ ⊂ 𝐻2 See Thm 7.24 

of book 

See Thm 11.4 
of book





▪ Definition The compressed shift is the operator 𝑆𝑢: 𝒦𝑢 → 𝒦𝑢 defined by

▪ 𝑆𝑢: 𝒦𝑢 → 𝒦𝑢 is a compression of 𝑆: 𝐻2 → 𝐻2 to the subspace 𝒦𝑢, that is,

𝑆𝑢𝑓 = 𝑃𝑢𝑆𝑓

𝑃𝑢: 𝐿2 → 𝒦𝑢

𝑝 𝑆𝑢 = 𝑃𝑢𝑝 𝑆 ቚ
𝒦𝑢

for all analytic polys 𝑝
(i.e. no ҧ𝑧𝑛)



▪ Proposition The following identity holds

▪ 𝑆𝑢 = 𝐶𝑆𝑢
∗𝐶. (“the compressed shift is a complex symmetric op”)

▪ 𝐼 − 𝑆𝑢𝑆𝑢
∗ = 𝑘0 ⊗ 𝑘0

▪ 𝐼 − 𝑆𝑢
∗𝑆𝑢 = 𝐶𝑘0 ⊗ 𝐶𝑘0 = 𝑆∗𝑢 ⊗ 𝑆∗𝑢

▪ Proposition 𝑆𝑢
𝑛 and 𝑆𝑢

∗𝑛 converges to the zero op. in the SOT. That is,

▪ Proposition 𝒦𝑢 = ڀ 𝑆𝑢
∗𝑛𝑘0 ∶ 𝑛 ≥ 0

▪ Theorem The compressed shift 𝑆𝑢 is irreducible. That is, there are no 

proper non-trivial reducing subspace for 𝒦𝑢 (invariant for both 𝑆𝑢 and 𝑆𝑢
∗).

Notes:

• Defn (Conjugation on 𝒦𝑢)

𝐶: 𝒦𝑢 → 𝒦𝑢 with 𝐶𝑓 = 𝑓𝑧𝑢

(via bdry fcts) 

• 𝐼 − 𝑆𝑆∗ = 𝑐0 ⊗ 𝑐0

• 𝐼 − 𝑆∗𝑆 = 0

• 𝒦𝑢 =∨ 𝑆∗𝑛𝑢 ∶ 𝑛 ≥ 1

• Think CNU contractions.

𝑆𝑢
𝑛𝑓 → 0 and 𝑆𝑢

∗𝑛𝑓 → 0, 𝑎𝑠 𝑛 → ∞, for all 𝑓 ∈ 𝒦𝑢 .



▪ Theorem (Wold Decomposition) Let 𝑇 ∈ ℬ(ℋ) be a contraction on a Hilbert space ℋ. 

Then we may write (uniquely!)

▪ Theorem (Sz.-Nagy-Foiaș) Let 𝑇 be a contraction on a Hilbert space ℋ such that

▪ 𝑇∗𝑛𝑥 → 0 as 𝑛 → ∞, for all 𝑥 ∈ ℋ,

▪ rank 𝐼 − 𝑇∗𝑇 = rank 𝐼 − 𝑇𝑇∗ = 1,

Then, there exists an inner fct 𝑢 such that 𝑇: ℋ → ℋ is unitarily equiv to 𝑆𝑢: 𝒦𝑢 → 𝒦𝑢.

𝑇 = 𝑈 ⊕ 𝐾

a completely non-unitary contraction

(i.e. no non-trivial reducing subspace for 𝐾)

a unitary op



▪ Construct the defect operator 𝐷 = 𝐼 − 𝑇∗𝑇, via the spectral thm of the (positive) SA operator 𝐼 − 𝑇∗𝑇.

▪ Embed ℋ into 𝐻2 using the isometry (hypothesis 𝑇∗𝑛 → 0 in SOT used here)

▪ range Φ is 𝑆∗-invariant. So by Beurling’s theorem, range Φ = 𝒦𝑢 for some inner 𝑢.

▪ Check

▪ Convert from 𝑆𝑢
∗ back to 𝑆𝑢 using 𝑈𝑆𝑢𝑈∗ = 𝑆

𝑢#
∗

Thm Let 𝑇 ∈ ℬ(ℋ) with 𝑇 𝑜𝑝 ≤ 1, 𝑇∗𝑛 → 0 in the SOT, 

and rank 𝐼 − 𝑇∗𝑇 = rank 𝐼 − 𝑇𝑇∗ = 1,

then ∃ inner 𝑢 such that 𝑇 ≅ 𝑆𝑢 .

Φ: ℋ → 𝐻2 ≅ 𝑙2(ℕ0)

Φx = 𝐷𝑥, 𝐷𝑇𝑥, 𝐷𝑇2𝑥, ⋯

ℋ ℋ

𝐻2 𝐻2

Φ Φ

𝑇

𝑇

, then restrict Φ’s codomain from 
𝐻2 to 𝒦𝑢 to get a unitary operator





▪ Fix an inner function 𝑢.

▪ Definition The 𝐻∞-functional calculus for 𝑆𝑢 is the mapping

i.e. 𝜑 𝑆𝑢 𝑓 = 𝑃𝑢 𝜑𝑓 , for 𝑓 ∈ 𝒦𝑢.

Λ: 𝐻∞ → ℬ 𝒦𝑢

𝜑 ↦ 𝜑 𝑆𝑢 ≔ 𝑃𝑢𝑇𝜑 ቚ
𝒦𝑢



▪ Theorem Fix an inner fct 𝑢. Then the mapping Λ: 𝐻∞ → ℬ 𝒦𝑢 is

▪ linear, multiplicative, a contraction (i.e. 𝜑(𝑆𝑢) ≤ 𝜑 ∞), and Λ𝑧 = 𝑆𝑢.

▪ Theorem Fix an inner fct 𝑢 and 𝜑 ∈ 𝐻∞. Then,

▪ 𝜑 𝑆𝑢
∗ = 𝑇ഥ𝜑|𝒦𝑢

▪ If ∑𝑛≥0 ො𝜑 𝑛 < ∞, then 𝜑 𝑆𝑢 = ∑𝑛≥0 ො𝜑 𝑛 𝑆𝑢
𝑛 (conv in op norm)

▪ 𝜑 𝑆𝑢 = 0 iff 𝜑 ∈ 𝑢𝐻∞ (the symbol is not unique! Unlike Toeplitz ops.)

▪ Theorem Fix an inner fct 𝑢 and 𝜑 ∈ 𝐻∞. Let 𝜑𝑛 𝑛≥1 ⊂ 𝐻∞ be s.t. sup
𝑛≥1

𝜑𝑢 ∞ < ∞.

▪ If lim
𝑛→∞

𝜑 𝜁 = 𝜑(𝜁) a.e. on 𝕋, then 𝜑𝑛 𝑆𝑢 → 𝜑 𝑆𝑢 in the SOT.

▪ If lim
𝑛→∞

𝜑 𝑧 = 𝜑(𝑧) for all 𝐳 ∈ 𝔻, then 𝜑𝑛 𝑆𝑢 → 𝜑 𝑆𝑢 in the WOT.

Λ: 𝐻∞ → ℬ 𝒦𝑢

𝜑 ↦ 𝜑 𝑆𝑢 ≔ 𝑃𝑢𝑇𝜑 ቚ
𝒦𝑢

an algebra 

homomorphism

(but not a *-alg homo)

be careful with 

adjoints! ത𝜑 ∉ 𝐻∞



▪ Definition Let 𝑢 = 𝐵𝑠𝜇 be a non-constant inner fct. The spectrum of 𝒖, 𝝈(𝒖) is the set

▪ Theorem (Liv�ු�ic-M ሷ𝐨ller) 𝜎 𝑆𝑢 = 𝜎(𝑢)

▪ Corollary 𝜎𝑝 𝑆𝑢 = 𝜎 𝑢 ∩ 𝔻 = 𝜆 ∈ 𝔻 ∶ 𝑢 𝜆 = 0 . The eigenvalues are simple.

▪ Proposition 𝜎𝑒 𝑆𝑢 = 𝜎 𝑢 ∩ 𝕋

𝜎 𝑢 = 𝑎𝑛 𝑛≥1 ∪ supp 𝜇

subset of 𝕋The zeros of 𝐵, 𝑎𝑛, lie in 𝔻
and may accumulate on 𝕋



▪ We need some vocabulary from operator algebras.

▪ Definition Let 𝐶∗(𝑆𝑢) be the unital 𝐶∗-algebra generated by 𝑆𝑢

▪ Definition 𝒞 𝐶∗ 𝑆𝑢 = smallest norm closed two-sided ideal of ℬ(ℋ) containing all commutators

𝐴𝐵 − 𝐵𝐴, where 𝐴, 𝐵 ∈ 𝐶∗ 𝑆𝑢 .

▪ Theorem For 𝑢 inner, we have

▪ 𝐶∗ 𝑆𝑢 = 𝜑 𝑆𝑢 + 𝐾 ∶ 𝜑 ∈ 𝐶 𝕋 and 𝐾: 𝒦𝑢 → 𝒦𝑢 compact

▪ 𝒞 𝐶∗ 𝑆𝑢 = compact ops in 𝒦𝑢

▪
𝐶∗ 𝑆𝑢

compact ops in 𝒦𝑢
≅ 𝐶(𝜎 𝑢 ∩ 𝕋) as 𝐶∗-algebras c.f. Gelfand-Naimark thm

Need to first make sense of 

𝜑(𝑆𝑢) for a symbol 𝜑 ∈ 𝐶(𝕋)

as opposed to 𝜑 ∈ 𝐻∞(𝔻)



▪ Theorem (spectral mapping) Let 𝑢 be inner and 𝜑: 𝔻 → ℂ be analytic with 

a continuous extension to ഥ𝔻, then

▪ 𝜎 𝜑 𝑆𝑢 = 𝜑 𝜎 𝑆𝑢 = 𝜑(𝜎(𝑢))

▪ 𝜎𝑒 𝜑 𝑆𝑢 = 𝜑 𝜎𝑒 𝑆𝑢 = 𝜑(𝜎 𝑢 ∩ 𝕋)

▪ Theorem Let 𝑢 be inner and 𝜑 ∈ 𝐻∞. Then

▪ Theorem (point spectrum) Let 𝑢 be inner and 𝜑 ∈ 𝐻∞. Fix 𝝀 ∈ ℂ. Set

Then

So, 

𝑣 = gcd( 𝜑 − 𝝀 inner , 𝑢)

ker 𝜑 𝑆𝑢 − 𝝀 =
𝑢

𝑣
𝒦𝑣 and ker ത𝜑 𝑆𝑢 − ത𝝀 = 𝒦𝑣

𝝀 ∈ 𝜎𝑝 𝜑 𝑆𝑢 ⟺ ത𝝀 ∈ 𝜎p ത𝜑 𝑆𝑢 ⟺ 𝑣 = gcd 𝜑 − 𝝀 inner , 𝑢 is not constant

Notes:
• Livsුic-M ሷoller gives 𝜎 𝑆𝑢 = 𝜎 𝑢
• The statement on 𝜎𝑒 𝜑(𝑆𝑢)

needs some operator algebra 
machinery

• Compare with: 𝜎 𝑆𝑢 = 𝜎 𝑢

= 𝜆 ∈ ഥ𝔻 ∶ liminf
𝑧→𝜆

𝑢 𝑧 = 0

• Need to define ത𝜑 𝑆𝑢 first
(c.f. “Truncated Toeplitz ops”) 

𝜎 𝜑 𝑆𝑢 = 𝝀 ∈ ℂ ∶ inf
𝑧∈𝔻

𝑢(𝑧) + 𝜑 𝑧 − 𝝀 = 0




	The Hardy Space H2(D)
	Two Key Operators
	Model Spaces
	The Compressed Shift
	H-inf functional calculus

