Model spaces and the compressed shift operator

Yi Sheng Lim
05/01/2023

UNIVERSITY OF
BATH

Goals

- Introduce the Hardy space $H^{2}(\mathbb{D})$ and model space $\mathcal{K}_{u}=\left(u H^{2}\right)^{\perp}$.
- Introduce key operators on the Hardy space
- Unilateral (forward) shift $S: H^{2} \rightarrow H^{2}$
- Compressed shift $S_{u}: \mathcal{K}_{u} \rightarrow \mathcal{K}_{u}$
- H^{∞} - functional calculus $\Lambda: H^{\infty} \rightarrow \mathcal{B}\left(\mathcal{K}_{u}\right)$

Introduction to Model Spaces and their Operators

STEPHAN RAMON GARCIA JAVAD MASHREGHI WILLIAM T. ROSS

Some notations

* Sets
- $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\} \quad z \in \mathbb{D}$
- $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\} \quad \zeta \in \mathbb{T}$
- Closed linear span $\bigvee \mathcal{M}=\overline{\operatorname{span} \mathcal{M}}$
- Measures
- $m=\frac{d \lambda}{2 \pi}$ normalized Leb meas. on \mathbb{T}
- $M(\mathbb{T})=\{$ complex Borel meas. $\}, M_{+}(\mathbb{T})=\{$ positive Borel meas. $\}$

The Hardy space $H^{2}(\mathbb{D})$

The Hardy space $\boldsymbol{H}^{2}(\mathbb{D})$

- Three equivalent definitions for $H^{2}=H^{2}(\mathbb{D})$

Definition v1 (Taylor coeff.)

$$
H^{2}(\mathbb{D})=\left\{f: \mathbb{D} \rightarrow \mathbb{C} \text { analytic }: \sum_{n=0}^{\infty}\left|a_{n}\right|^{2}<\infty, \text { where } f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}\right\}
$$

Hilbert space

Definition v2 (Bounded integral means)

$$
H^{2}(\mathbb{D})=\left\{f: \mathbb{D} \rightarrow \mathbb{C} \text { analytic }: \sup _{0<r<1} \int_{\mathbb{T}}|f(r \zeta)|^{2} d m(\zeta)<\infty\right\}
$$

Definition v3 (Identify with bdry fcts + no negative Fourier coeff.)

$$
H^{2}(\mathbb{D})=\left\{f \in L^{2}(\mathbb{T}): \hat{f}(n)=0 \text { when } n \leq-1, \text { where } f=\sum_{n=-\infty}^{\infty} \hat{f}(n) \zeta^{n}\right\}
$$

Controls growth as we approach T

Easier to work with bdry fcts / Fourier series

The Hardy space \boldsymbol{H}^{2}

$$
\begin{aligned}
H^{2} & =\left\{f: \mathbb{D} \rightarrow \mathbb{C} \text { analytic : } \sum\left|a_{n}\right|^{2}<\infty, \text { where } f(z)=\sum a_{n} z^{n}\right\} \\
& =\left\{f: \mathbb{D} \rightarrow \mathbb{C} \text { analytic : } \sup _{0<r<1} \int_{\mathbb{T}}|f(r \zeta)|^{2} d m(\zeta)<\infty\right\} \\
& =\left\{f \in L^{2}(\mathbb{T}): \hat{f}(n)=0 \text { when } n \leq-1, f=\sum \hat{f}(n) \zeta^{n}\right\}
\end{aligned}
$$

- Definition v1 (Taylor coeff.)

$$
H^{2}(\mathbb{D})=\left\{f: \mathbb{D} \rightarrow \mathbb{C} \text { analytic : } \sum_{n=0}^{\infty}\left|a_{n}\right|^{2}<\infty, \text { where } f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}\right\}
$$

Equip this space with inner product

$$
\langle f, g\rangle=\left\langle\sum_{n \geq 0} a_{n} z^{n}, \sum_{n \geq 0} b_{n} z^{n}\right\rangle:=\sum_{n \geq 0} a_{n} \overline{b_{n}}
$$

(write the corresponding norm as $\|\cdot\|$)

So that H^{2} becomes a Hilbert space.

The Hardy space H^{2}

```
H
    ={f:\mathbb{D}->\mathbb{C}\mathrm{ analytic : < sup 0<r<1 }\mp@subsup{\int}{\mathbb{T}}{}|f(r\zeta)\mp@subsup{|}{}{2}dm(\zeta)<\infty}
    ={f\in\mp@subsup{L}{}{2}(\mathbb{T}):\hat{f}(n)=0\mathrm{ when }n\leq-1,f=\sum\hat{f}(n)\mp@subsup{\zeta}{}{n}}
```

- Definition v2 (Bounded integral means)

$$
H^{2}(\mathbb{D})=\left\{f: \mathbb{D} \rightarrow \mathbb{C} \text { analytic }: \sup _{0<r<1} \int_{\mathbb{T}}|f(r \zeta)|^{2} d m(\zeta)<\infty\right\}
$$

Now, using the fact that

$$
\int_{\mathbb{T}}|f(r \zeta)|^{2} d m(\zeta)=\sum_{n=0}^{\infty}\left|a_{n}\right|^{2} r^{2 n}
$$

We can get
$\xrightarrow{\text { Proposition }}$ Let $f: \mathbb{D} \rightarrow \mathbb{C}$ be analytic. Then $f \in H^{2}$ iff $\sup _{0<r<1} \int_{\mathbb{T}}|f(r \zeta)|^{2} d m(\zeta)<\infty$.
Moreover,

$$
\text { version } 1 \leadsto\|f\|^{2}=\sup _{0<r<1} \int_{\mathbb{T}}|f(r \zeta)|^{2} d m(\zeta)
$$

The Hardy space \boldsymbol{H}^{2}

$$
\begin{aligned}
H^{2} & =\left\{f: \mathbb{D} \rightarrow \mathbb{C} \text { analytic : } \sum\left|a_{n}\right|^{2}<\infty, \text { where } f(z)=\sum a_{n} z^{n}\right\} \\
& =\left\{f: \mathbb{D} \rightarrow \mathbb{C} \text { analytic : } \sup _{0<r<1} \int_{\mathbb{T}}|f(r \zeta)|^{2} d m(\zeta)<\infty\right\} \\
& =\left\{f \in L^{2}(\mathbb{T}): \hat{f}(n)=0 \text { when } n \leq-1, f=\sum \hat{f}(n) \zeta^{n}\right\}
\end{aligned}
$$

- Definition v3 (Identify with bdry fcts + no negative Fourier coeff.)

$$
H^{2}(\mathbb{D})=\left\{f \in L^{2}(\mathbb{T}): \hat{f}(n)=0 \text { when } n \leq-1, \text { where } f=\sum_{n=-\infty}^{\infty} \hat{f}(n) \zeta^{n}\right\}
$$

How do we identify $f: \mathbb{D} \rightarrow \mathbb{C}$ with a function $f: \mathbb{T} \rightarrow \mathbb{C} ?$ We need Fatou's theorem

Theorem (Fatou) Let $\mu \in M(\mathbb{T})$ and $\zeta \in \mathbb{T}$. If $(D \mu)(\zeta)$ exists, then

$$
\lim _{r \rightarrow 1^{-}} \mathcal{P}(\mu)(r \zeta)=(D \mu)(\zeta)
$$

i.e. $\mathcal{P}(\mu)$ has a finite radial limit m-a.e. on \mathbb{T}.

Corollary Let $f=\sum a_{n} z^{n}$ in H^{2}. Then

$$
\lim _{r \rightarrow 1^{-}} f(r \zeta)=\lim _{r \rightarrow 1^{-}} \mathcal{P}(f d m)(r \zeta)=f(\zeta)
$$

exists for m-a.e. $\zeta \in \mathbb{T}$.

The Hardy space \boldsymbol{H}^{2}

- Definition v3 (Identify with bdry fcts + no negative Fourier coeff.)

Since $f=\sum a_{n} z^{n} \in H^{2}$, we know a lot more about the bdry fct $\zeta \mapsto f(\zeta)$:

Theorem Let $f=\sum a_{n} z^{n}$ in H^{2}. Then
i. $\quad \lim _{r \rightarrow 1^{-}} f(r \zeta)=f(\zeta)$ exists m-a.e. $\zeta \in \mathbb{T}$.
ii. The boundary fct $\zeta \mapsto f(\zeta)$ belongs to $L^{2}(\mathbb{T})$
iii. If $n \geq 0$, then $\hat{f}(n)=a_{\mathrm{n}}$.
\quad If $n \leq-1$, then $\hat{f}(n)=0$.
iv. $\|f\|^{2}=\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}=\sup _{0<r<1} \int_{\mathbb{T}}|f(r \zeta)|^{2} d m(\zeta)=\int_{\mathbb{T}}|f(\zeta)|^{2} d m(\zeta)$ fct $f(\zeta)=\sum a_{n} \zeta^{n}$

```
H
    ={f:\mathbb{D}->\mathbb{C}\mathrm{ analytic : <upup }\mp@subsup{\int}{0<r<1}{\mathbb{T}}|}|f(r\zeta)\mp@subsup{|}{}{2}dm(\zeta)<\infty
    ={f\in\mp@subsup{L}{}{2}(\mathbb{T}):\hat{f}(n)=0\mathrm{ when }n\leq-1,f=\sum\hat{f}(n)\mp@subsup{\zeta}{}{n}}
\[
\begin{aligned}
H^{2} & =\left\{f: \mathbb{D} \rightarrow \mathbb{C} \text { analytic : } \sum\left|a_{n}\right|^{2}<\infty, \text { where } f(z)=\sum a_{n} z^{n}\right\} \\
& =\left\{f: \mathbb{D} \rightarrow \mathbb{C} \text { analytic : } \sup _{0<r<1} \int_{\mathbb{T}}|f(r \zeta)|^{2} d m(\zeta)<\infty\right\} \\
& =\left\{f \in L^{2}(\mathbb{T}): \hat{f}(n)=0 \text { when } n \leq-1, f=\sum \hat{f}(n) \zeta^{n}\right\}
\end{aligned}
\]
```


The Hardy space H^{2}

- Takeaways

$$
\begin{aligned}
H^{2} & =\left\{f: \mathbb{D} \rightarrow \mathbb{C} \text { analytic }: \sum\left|a_{n}\right|^{2}<\infty, \text { where } f(z)=\sum a_{n} z^{n}\right\} \\
& =\left\{f: \mathbb{D} \rightarrow \mathbb{C} \text { analytic : } \sup _{0<r<1} \int_{\mathbb{T}}|f(r \zeta)|^{2} d m(\zeta)<\infty\right\} \\
& =\left\{f \in L^{2}(\mathbb{T}): \hat{f}(n)=0 \text { when } n \leq-1, f=\sum \hat{f}(n) \zeta^{n}\right\}
\end{aligned}
$$

- We can embed $H^{2}(\mathbb{D})$ into $L^{2}(\mathbb{T})$ via its bdry fct, giving us

Also, since

$$
\|f\|^{2}=\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}=\sup _{0<r<1} \int_{\mathbb{T}}|f(r \zeta)|^{2} d m(\zeta)=\int_{\mathbb{T}}|f(\zeta)|^{2} d m(\zeta)
$$

we abuse notation and write $\|f\|$ for both the norm on $H^{2}(\mathbb{D})$ and $L^{2}(\mathbb{T})$.

Non-tangential limits

- Fatou's theorem can be extended from radial limits to non-tangential limits

Definition For a function $f: \mathbb{D} \rightarrow \mathbb{C}$ and $\zeta \in \mathbb{T}$, we say that $f(z)$ approaches $L \in \mathbb{C}$ non-tangentially, denoted

$$
L=\angle \lim _{z \rightarrow \zeta} f(z)
$$

if $f(z) \rightarrow L$ holds whenever $z \rightarrow \zeta$ in every fixed Stolz domain $\Gamma_{\alpha}(\zeta)$

$$
\Gamma_{\alpha}(\zeta)=\{z \in \mathbb{D}:|z-\zeta|<\alpha(1-|z|)\}, \quad \alpha>1
$$

The Stolz domain $\Gamma_{1.5}(1)$ (Taken from Figure 1.3 of book)

Important classes of fcts in H^{2}

- Cauchy Kernel c_{λ}

$$
c_{\lambda}(z)=\frac{1}{1-\bar{\lambda} z}, \quad \text { where } \lambda \in \mathbb{D} .
$$

- Properties
- $f(\lambda)=\left\langle f, c_{\lambda}\right\rangle$. In particular, $\left\|c_{\lambda}\right\|^{2}=\left\langle c_{\lambda}, c_{\lambda}\right\rangle=c_{\lambda}(\lambda)=\frac{1}{1-|\lambda|^{2}}$.
- $\left\{c_{\lambda}: \lambda \in \mathbb{D}\right\}$ is linearly independent
- $V\left\{c_{\lambda}: \lambda \in \mathbb{D}\right\}=H^{2}$
- Let $\Lambda \subset \mathbb{D}$ have an accumulation point in \mathbb{D}, then $\vee\left\{c_{\lambda}: \lambda \in \Lambda\right\}=H^{2}$

Important classes of fcts in \boldsymbol{H}^{2}

- Bounded analytic functions on $\mathbb{D}, H^{\infty}(\mathbb{D})$

$$
H^{\infty}=\left\{f: \mathbb{D} \rightarrow \mathbb{C} \text { analytic }:\|f\|_{\infty}=\sup _{z \in \mathbb{D}}|f(z)|\right\}
$$

We can prove $H^{\infty} \subset H^{2}$ by using the bdd integral means defn of H^{2}

- E.g. Möbius transformations $\tau_{\zeta, a}$ belong to H^{∞}

$$
\tau_{\zeta, a}(z)=\zeta \frac{a-z}{1-\bar{a} z} \quad a \in \mathbb{D}, \zeta \in \mathbb{T}
$$

$\tau_{\zeta, a}$ is a bijection from \mathbb{D} to \mathbb{D}, and from \mathbb{T} to \mathbb{T}.

- Definition A function $u \in H^{\infty}$ is an inner function if $|u(\zeta)|=1$ a.e. on \mathbb{T}.
so $|u(z)| \leq 1$ on \mathbb{D} by the
Max modulus theorem

Important classes of fcts in \boldsymbol{H}^{2}

- $u \in H^{\infty}$ is an inner function if $|u(\zeta)|=1$ a.e. on \mathbb{T}.

A Blaschke product is a function of the form

$$
B(z)=\xi z^{N} \prod_{n=1}^{\infty} \frac{\overline{a_{n}}}{\left|a_{n}\right|} \frac{a_{n}-z}{1-\overline{a_{n} z}}
$$

where $\xi \in \mathbb{T}, N \in \mathbb{N}_{0}$, and $\left\{a_{n}\right\}_{n \geq 1} \subset \mathbb{D} \backslash\{0\}$ is s.t.

$$
\sum_{n \geq 1}\left(1-\left|a_{n}\right|\right)<\infty
$$

- The zeros of $B(z)$ are a_{n} and 0 (if there is a z^{N} term)
- The Blaschke condition ensures that the infinite product converges nicely, and gives us $|B(\zeta)|=1$ on \mathbb{T}

A singular inner fct is a function of the form

$$
s_{\mu}(z)=\xi \exp \left(-\int_{\mathbb{T}} \frac{\zeta+z}{\zeta-z} d \mu(\zeta)\right)
$$

where $\xi \in \mathbb{T}$, and $\mu \in M_{+}(\mathbb{T})$ with $\mu \perp m$

- $\mu \perp m$ is used to get $\left|s_{\mu}(\zeta)\right|=1$ on \mathbb{T}
- s_{μ} does not vanish anywhere on \mathbb{D}
- $-\log \left|s_{\mu}\right|$ is a positive Harmonic fct ... Herglotz representation applies ... $\mathcal{P}(\mu) \ldots$

Important classes of fcts in H^{2}

- $u \in H^{\infty}$ is an inner function if $|u(\zeta)|=1$ a.e. on \mathbb{T}.

Blaschke product

$$
B(z)=\xi z^{N} \prod_{n=1}^{\infty} \frac{\overline{a_{n}}}{\left|a_{n}\right|} \frac{a_{n}-z}{1-\overline{a_{n}} z}
$$

Singular inner function

$$
s_{\mu}(z)=\xi \exp \left(-\int_{\mathbb{T}} \frac{\zeta+z}{\zeta-z} d \mu(\zeta)\right)
$$

Theorem (Nevanlinna-Riesz) If $u \in H^{\infty}$ is inner, then it can be written as

$$
u(z)=B(z) s_{\mu}(z)
$$

For some Blaschke pdt B, and singular inner fct s_{μ}.
This factorization is unique up to a unimodular const.

Important classes of fcts in \boldsymbol{H}^{2}

- What about factorization for $f \in H^{2}$?

Blaschke product

$$
B(z)=\xi z^{N} \prod_{n=1}^{\infty} \frac{\overline{a_{n}}}{\left|a_{n}\right|} \frac{a_{n}-z}{1-\overline{a_{n}} z}
$$

Singular inner function

$$
s_{\mu}(z)=\xi \exp \left(-\int_{\mathbb{T}} \frac{\zeta+z}{\zeta-z} d \mu(\zeta)\right)
$$

An outer function is an analytic fct $F: \mathbb{D} \rightarrow \mathbb{C}$ of the form

$$
F(z)=\xi \exp \left(\int_{\mathbb{T}} \frac{\zeta+z}{\zeta-z} \varphi(\zeta) d m(\zeta)\right)
$$

where $\xi \in \mathbb{T}$, and $\varphi \in L^{1}$ is real-valued

Theorem (inner-outer factorization) If $f \in H^{2} \backslash\{0\}$, then it can be written as

$$
f=B s_{\mu} F
$$

For some Blaschke pdt B, singular inner fct s_{μ}, and outer fct $F \in H^{2}$.
Conversely, a product of this form belongs to H^{2}.
This factorization is unique up to a unimodular const.

Two key operators

Unilateral shift $S: H^{2} \rightarrow H^{2}$
Toeplitz operator $T_{\varphi}: H^{2} \rightarrow H^{2}$

Key operators

- Unilateral shift operator (right shift)

$$
\begin{aligned}
S: H^{2} & \rightarrow H^{2} \\
(S f)(z) & =z f(z)
\end{aligned}
$$

$$
\text { If } f=\sum_{n \geq 0} a_{n} z^{n} \in H^{2} \text {, then }
$$

$$
S\left(a_{0}, a_{1}, \mathrm{a}_{2}, \cdots\right)=\left(0, \mathrm{a}_{0}, a_{1}, \cdots\right)
$$

- Toeplitz operator with symbol $\varphi \in L^{\infty}$

$$
\begin{aligned}
& T_{\varphi}: H^{2} \rightarrow H^{2} \\
& T_{\varphi}(f)=P(\varphi f) \\
& P=\text { projection of } L^{2} \text { onto } H^{2} \text { (via bdry fcts) } \\
& \text { "Riesz projection" }
\end{aligned}
$$

Key operators

$$
\begin{gathered}
T_{\varphi}: H^{2} \rightarrow H^{2} \\
T_{\varphi}(f)=P(\varphi f)
\end{gathered} \begin{gathered}
S: H^{2} \rightarrow H^{2} \\
(S f)(z)=z f(z)
\end{gathered}
$$

- Properties of Toeplitz operators
- $a T_{\varphi}+b T_{\psi}=T_{a \varphi+b \psi}$
- $\left\|T_{\varphi}\right\|=\|\varphi\|_{\infty}$
- $T_{\varphi}=T_{\psi} \Leftrightarrow \varphi=\psi$
- $\left(T_{\varphi}\right)^{*}=T_{\bar{\varphi}}$
- T_{φ} compact $\Leftrightarrow \varphi=0$
- For $\varphi, \psi \in L^{\infty}, T_{\psi} T_{\varphi}$ is a Toeplitz op $\Leftrightarrow T_{\psi}$ is conjugate analytic or T_{φ} is analytic.
(i.e. if $T_{\psi}=T_{\bar{\sigma}}$ for some $\sigma \in H^{\infty}$, or if $\varphi \in H^{\infty}$)

In this case, $T_{\psi} T_{\varphi}=T_{\psi \varphi}$.

- Theorem (Beurling) Every non-zero subspace \mathcal{M} of H^{2} that is invariant under S is of the form

$$
\mathcal{M}=u H^{2}
$$

for some inner function u. (The choice u is unique up to a unimodular constant.)

Simple eigenvalues

Proof outline (of Beurling's Thm)

Thm Let $0 \neq \mathcal{M} \subset H^{2}, S \mathcal{M} \subset \mathcal{M}$. Then $\mathcal{M}=u H^{2}$ for some inner u.

- \mathcal{M} non-zero $\Rightarrow S \mathcal{M} \subsetneq \mathcal{M}$. So let us look at $\mathcal{M} \ominus S \mathcal{M}=\mathcal{M} \cap(S \mathcal{M})^{\perp} \neq\{0\}$
= In $\mathcal{M} \ominus S \mathcal{M}$, extract a non-zero, inner u in the following steps
- $|u(\zeta)| \equiv$ constant m-a.e. on \mathbb{T} (via a Fourier S. argument)
- Combine \uparrow with Smirnov's theorem and $u \in H^{2}$, to conclude $u \in H^{\infty}$
- Show that the S-invariant subspace generated by u, equals $u H^{2}$, i.e.

$$
[u]=u H^{2}
$$

- (С) automatic, since u inner, hence $u H^{2}$ closed.
= (Э) approx $u G \in u H^{2}$ by $u G_{N} \in[u]$. Uses: $G_{N} \rightarrow G$ in H^{2} and $|u| \equiv 1$ on \mathbb{T}.
Truncated Taylor series of G

Notes

- Inner-outer factorization thm is a key ingredient for Smirnov's thm.
- In fact, the argument to extract u shows that $\mathcal{M} \ominus S \mathcal{M}$ is 1D!
- We are showing

$$
\mathcal{M}=[\mathcal{M} \ominus S \mathcal{M}]=u H^{2}
$$

(compare this with similar results in Bergman spaces L_{a}^{2} and Dirichlet spaces \mathcal{D})

- Show $[u]=\mathcal{M}$
- (\subseteq) automatic, since \mathcal{M} is S-invariant
- (Э) Use a Fourier S. argument.

$$
\begin{aligned}
& f \perp[u] \\
& \Rightarrow\left\langle f, S^{n} u\right\rangle=0 \text { and }\left\langle S^{n} f, u\right\rangle=0 \\
& \Rightarrow f \bar{u}=0 \text { a.e. on } \mathbb{T} \\
& \Rightarrow f=0 \text { a.e. on } \mathbb{T} \text { (because } u \text { inner) }
\end{aligned}
$$

Model spaces

Definition of Model Space \mathcal{K}_{u}

- Definition If u is an inner function, the model space \mathcal{K}_{u} is

$$
\mathcal{K}_{u}:=\left(u H^{2}\right)^{\perp}=\left\{f \in H^{2}:\langle f, u h\rangle=0 \text { for all } h \in H^{2}\right\}
$$

- Proposition The model spaces \mathcal{K}_{u} are precisely the proper S^{*}-invariant subspaces of H^{2}.
- Proposition via the identification with non-tangential bdry values, we have

$$
\begin{aligned}
\mathcal{K}_{u} & =H^{2} \cap u \overline{z H^{2}} \\
& =\left\{f \in H^{2}: f=\overline{g z} u \quad \text { a. e. on } \mathbb{T}, \text { for some } g \in H^{2}\right\}
\end{aligned}
$$

Reproducing kernels

- Reproducing kernel for \mathcal{K}_{u} (depends on u and $\lambda \in \mathbb{D}$)

$$
k_{\lambda}(z)=(1-\overline{u(\lambda)} u(z)) c_{\lambda}(z)=\frac{1-\overline{u(\lambda)} u(z)}{1-\bar{\lambda} z}, \quad \text { where } \lambda \in \mathbb{D} \text {. }
$$

- This gives us

$$
f(\lambda)=\left\langle f, k_{\lambda}\right\rangle, \quad \text { where } f \in \mathcal{K}_{u} .
$$

- Definition Let P_{u} be the orthogonal projection of L^{2} onto \mathcal{K}_{u}. (via non-tang. bdry values)
- Then, the kernels k_{λ} and c_{λ} are related by

$$
k_{\lambda}=P_{u} c_{\lambda}
$$

Special cases of \mathcal{K}_{u}

$$
k_{\lambda}(z)=\frac{1-\overline{u(\lambda)} u(z)}{1-\bar{\lambda} z}
$$

- If $u=z^{n}$, then

$$
\mathcal{K}_{u}=\left(z^{n} H^{2}\right)^{\perp}=\bigvee\left\{1, z, \cdots, z^{n-1}\right\}
$$

- If $u=$ finite Blaschke product with distinct zeros $\lambda_{1}, \cdots, \lambda_{n}$ with corresponding multiplicities m_{1}, \cdots, m_{n}, then

$$
\mathcal{K}_{u}=\bigvee\left\{c_{\lambda_{i}}^{\left(l_{i}-1\right)}: 1 \leq i \leq n, 1 \leq l_{i} \leq m_{i}\right\}
$$

(and so $\operatorname{dim} \mathcal{K}_{u}=m_{1}+\cdots+m_{n}$).

Notes:

- $u \notin \mathcal{K}_{u}$!!!
- For this special case, $k_{\lambda_{i}}=c_{\lambda_{i}}$
- This formula is can be extended to infinite Blaschke pdts.
- In fact, $\operatorname{dim} \mathcal{K}_{u}<\infty \Leftrightarrow$ $u=$ finite Blaschke product!

Density

- Proposition Let $\Lambda \subset \mathbb{D}$, and u be inner.

Same as for c_{λ} in H^{2}

- If Λ has an accumulation point in \mathbb{D}, then $\bigvee\left\{k_{\lambda}: \lambda \in \Lambda\right\}=\mathcal{K}_{u}$.
- If $\sum_{\lambda \in \Lambda}(1-|\lambda|)=\infty$, then $\bigvee\left\{k_{\lambda}: \lambda \in \Lambda\right\}=\mathcal{K}_{u}$.
- Proposition $\mathcal{K}_{u} \cap H^{\infty}$ is dense in \mathcal{K}_{u}.
- Proposition The function $S^{*} u$ generates \mathcal{K}_{u}, i.e.

$$
\mathcal{K}_{u}=\bigvee\left\{S^{* n} u: n \geq 1\right\}
$$

See Prop 8.22 of book for an improved result

Going between two model spaces

- We need to know how two inner fcts u and v are related, via the inner-outer factorization.
- Definition Let u and v be inner fcts.
- $u \mid v$ means $\frac{v}{u}$ is inner
- u and v are relatively prime, means the only common inner divisors of u and v are const fcts with unit modulus
- Lemma $\mathcal{K}_{u_{1} u_{2}}=\mathcal{K}_{u_{1}} \oplus u_{1} \mathcal{K}_{u_{2}} \ldots$ (extends to infinite products)
- Proposition For u, v inner functions,
- $\mathcal{K}_{u} \subset \mathcal{K}_{v} \Leftrightarrow u \mid v$
$=\mathcal{K}_{u} \cap \mathcal{K}_{v} \Leftrightarrow \mathcal{K}_{\operatorname{gcd}(u, v)}$
$-\mathcal{K}_{u} \vee \mathcal{K}_{v} \Leftrightarrow \mathcal{K}_{\operatorname{lcm}(u, v)}$

The inner fcts $\operatorname{gcd}(u, v)$ and $\operatorname{lcm}(u, v)$ are defined in Corollary 4.8 and 4.9 of book

Boundary kernels

- We know that $f \in \mathcal{K}_{u} \subset H^{2}$ has a non-tangential limit m-a.e. on \mathbb{T}.
- But for a fixed $\zeta \in \mathbb{T}$, does $f \in \mathcal{K}_{u}$ have a non-tangential limit?
- This is related to the existence of the limit of

$$
k_{\lambda}(z)=\frac{1-\overline{u(\lambda)} u(z)}{1-\bar{\lambda} z} \in \mathcal{K}_{u} \cap H^{\infty} \subset H^{2}
$$

See Thm 7.24 of book
as we take $\lambda \rightarrow \zeta \in \mathbb{T}$. The limit (if it exists) is called the boundary kernel $k_{\zeta} \in \mathcal{K}_{u}$.

- Does the limit k_{ζ} satisfy the reproducing kernel property at \mathbb{T}

$$
f(\zeta)=\left\langle f, k_{\zeta}\right\rangle ?
$$

- It turns out that boundary kernels are the eigenvectors of an important class of ops on \mathcal{K}_{u}, called Clark unitary operators. See Thm 11.4 of book.

See Thm 11.4 of book

The compressed shift

The compressed shift (definition)

- Definition The compressed shift is the operator $S_{u}: \mathcal{K}_{u} \rightarrow \mathcal{K}_{u}$ defined by

$$
S_{u} f=P_{u} S f
$$

- $S_{u}: \mathcal{K}_{u} \rightarrow \mathcal{K}_{u}$ is a compression of $S: H^{2} \rightarrow H^{2}$ to the subspace \mathcal{K}_{u}, that is,

$$
p\left(S_{u}\right)=\left.P_{u} p(S)\right|_{\mathcal{K}_{u}} \quad \begin{aligned}
& \text { for all analytic polys } p \\
& \text { (i.e. no } \left.\bar{z}^{n}\right)
\end{aligned}
$$

The compressed shift (properties)

- Proposition The following identity holds
" $S_{u}=C S_{u}^{*} C$. ("the compressed shift is a complex symmetric op")
- $I-S_{u} S_{u}^{*}=k_{0} \otimes k_{0}$
- $I-S_{u}^{*} S_{u}=C k_{0} \otimes C k_{0}=S^{*} u \otimes S^{*} u$
- Proposition S_{u}^{n} and $S_{u}^{* n}$ converges to the zero op. in the SOT. That is,

$$
\left\|S_{u}^{n} f\right\| \rightarrow 0 \text { and }\left\|S_{u}^{* n} f\right\| \rightarrow 0, \quad \text { as } n \rightarrow \infty, \text { for all } f \in \mathcal{K}_{u}
$$

- Proposition $\mathcal{K}_{u}=\mathrm{V}\left\{S_{u}^{* n} k_{0}: n \geq 0\right\}$
- Theorem The compressed shift S_{u} is irreducible. That is, there are no proper non-trivial reducing subspace for \mathcal{K}_{u} (invariant for both S_{u} and S_{u}^{*}).

Notes:

- Defn (Conjugation on \mathcal{K}_{u})
$C: \mathcal{K}_{u} \rightarrow \mathcal{K}_{u}$ with $C f=\overline{f z} u$
(via bdry fcts)
- $I-S S^{*}=c_{0} \otimes c_{0}$
- $I-S^{*} S=0$
- $\mathcal{K}_{u}=\vee\left\{S^{* n} u: n \geq 1\right\}$
- Think CNU contractions.

Key theorems

- Theorem (Wold Decomposition) Let $T \in \mathcal{B}(\mathcal{H})$ be a contraction on a Hilbert space \mathcal{H}. Then we may write (uniquely!)

- Theorem (Sz.-Nagy-Foiaș) Let T be a contraction on a Hilbert space \mathcal{H} such that - $\left\|T^{* n} x\right\| \rightarrow 0$ as $n \rightarrow \infty$, for all $x \in \mathcal{H}$,
- $\operatorname{rank}\left(I-T^{*} T\right)=\operatorname{rank}\left(I-T T^{*}\right)=1$,

Then, there exists an inner fct u such that $T: \mathcal{H} \rightarrow \mathcal{H}$ is unitarily equiv to $S_{u}: \mathcal{K}_{u} \rightarrow \mathcal{K}_{u}$.

Proof outline (of Sz.-Nagy-Foiaṣ)

Thm Let $T \in \mathcal{B}(\mathcal{H})$ with $\|T\|_{o p} \leq 1, T^{* n} \rightarrow 0$ in the SOT, and $\operatorname{rank}\left(I-T^{*} T\right)=\operatorname{rank}\left(I-T T^{*}\right)=1$, then \exists inner u such that $T \cong S_{u}$.

- Construct the defect operator $D=\sqrt{I-T^{*} T}$, via the spectral the of the (positive) SA operator $I-T^{*} T$.
- Embed \mathcal{H} into H^{2} using the isometry (hypothesis $T^{* n} \rightarrow 0$ in SOT used here)

$$
\begin{gathered}
\Phi: \mathcal{H} \rightarrow H^{2} \cong l^{2}\left(\mathbb{N}_{0}\right) \\
\Phi \mathrm{x}=\left(D x, D T x, D T^{2} x, \cdots\right)
\end{gathered}
$$

- range (Φ) is S^{*}-invariant. So by Beurling's theorem, range $(\Phi)=\mathcal{K}_{u}$ for some inner u.
- Check

, then restrict Φ^{\prime} s codomain from H^{2} to \mathcal{K}_{u} to get a unitary operator
- Convert from S_{u}^{*} back to S_{u} using $U S_{u} U^{*}=S_{u^{\#}}^{*}$

H^{∞}-functional calculus

H^{∞} - functional calculus

- Fix an inner function u.
- Definition The H^{∞}-functional calculus for S_{u} is the mapping

$$
\begin{gathered}
\Lambda: H^{\infty} \rightarrow \mathcal{B}\left(\mathcal{K}_{u}\right) \\
\varphi \mapsto \varphi\left(S_{u}\right):=\left.P_{u} T_{\varphi}\right|_{\mathcal{K}_{u}}
\end{gathered}
$$

i.e. $\varphi\left(S_{u}\right) f=P_{u}(\varphi f)$, for $f \in \mathcal{K}_{u}$.

Basic properties

$$
\begin{gathered}
\Lambda: H^{\infty} \rightarrow \mathcal{B}\left(\mathcal{K}_{u}\right) \\
\varphi \mapsto \varphi\left(S_{u}\right):=\left.P_{u} T_{\varphi}\right|_{\mathcal{K}_{u}}
\end{gathered}
$$

" Theorem Fix an inner fct u. Then the mapping $\Lambda: H^{\infty} \rightarrow \mathcal{B}\left(\mathcal{K}_{u}\right)$ is

- linear, multiplicative, a contraction (i.e. $\left\|\varphi\left(S_{u}\right)\right\| \leq\|\varphi\|_{\infty}$), and $\Lambda z=S_{u}$.
- Theorem Fix an inner fct u and $\varphi \in H^{\infty}$. Then,
- $\varphi\left(S_{u}\right)^{*}=\left.T_{\bar{\varphi}}\right|_{\mathcal{K}_{u}}$
- If $\sum_{n \geq 0}|\hat{\varphi}(n)|<\infty$, then $\varphi\left(S_{u}\right)=\sum_{n \geq 0} \hat{\varphi}(n) S_{u}^{n}$ (conv in op norm)
- $\varphi\left(S_{u}\right)=0$ iff $\varphi \in u H^{\infty}$ (the symbol is not unique! Unlike Toeplitz ops.)
- Theorem Fix an inner fct u and $\varphi \in H^{\infty}$. Let $\left\{\varphi_{n}\right\}_{n \geq 1} \subset H^{\infty}$ be s.t. $\sup _{n \geq 1}\left\|\varphi_{u}\right\|_{\infty}<\infty$.
- If $\lim _{n \rightarrow \infty} \varphi(\zeta)=\varphi(\zeta)$ a.e. on \mathbb{T}, then $\varphi_{n}\left(S_{u}\right) \rightarrow \varphi\left(S_{u}\right)$ in the SOT.
- If $\lim _{n \rightarrow \infty} \varphi(z)=\varphi(z)$ for all $\mathrm{z} \in \mathbb{D}$, then $\varphi_{n}\left(S_{u}\right) \rightarrow \varphi\left(S_{u}\right)$ in the WOT.
an algebra homomorphism (but not a *-alg homo)
be careful with adjoints! $\bar{\varphi} \notin H^{\infty}$

The spectrum of S_{u}

- Definition Let $u=B s_{\mu}$ be a non-constant inner fct. The spectrum of $\boldsymbol{u}, \boldsymbol{\sigma}(\boldsymbol{u})$ is the set

$$
\sigma(u)={\left.\overline{\left\{a_{n}\right.}\right\}_{n \geq 1} \cup \operatorname{supp} \mu}
$$

The zeros of B, a_{n}, lie in \mathbb{D} subset of \mathbb{T} and may accumulate on \mathbb{T}

- Theorem (Livšic-Möller) $\sigma\left(S_{u}\right)=\sigma(u)$
" Corollary $\sigma_{p}\left(S_{u}\right)=\sigma(u) \cap \mathbb{D}=\{\lambda \in \mathbb{D}: u(\lambda)=0\}$. The eigenvalues are simple.
- Proposition $\sigma_{e}\left(S_{u}\right)=\sigma(u) \cap \mathbb{T}$

Some operator algebraic properties

- We need some vocabulary from operator algebras.
- Definition Let $C^{*}\left(S_{u}\right)$ be the unital C^{*}-algebra generated by S_{u}
- Definition $\mathcal{C}\left(C^{*}\left(S_{u}\right)\right)=$ smallest norm closed two-sided ideal of $\mathcal{B}(\mathcal{H})$ containing all commutators

$$
A B-B A, \quad \text { where } A, B \in C^{*}\left(S_{u}\right)
$$

- Theorem For u inner, we have
- $C^{*}\left(S_{u}\right)=\left\{\varphi\left(S_{u}\right)+K: \varphi \in C(\mathbb{T})\right.$ and $K: \mathcal{K}_{u} \rightarrow \mathcal{K}_{u}$ compact $\}$
- $\mathcal{C}\left(C^{*}\left(S_{u}\right)\right)=\left\{\right.$ compact ops in $\left.\mathcal{K}_{u}\right\}$

Need to first make sense of $\varphi\left(S_{u}\right)$ for a symbol $\varphi \in C(\mathbb{T})$
as opposed to $\varphi \in H^{\infty}(\mathbb{D})$
" $\frac{C^{*}\left(S_{u}\right)}{\left\{\text { compact ops in } \mathcal{K}_{u}\right\}} \cong C(\sigma(u) \cap \mathbb{T})$ as C^{*}-algebras

c.f. Gelfand-Naimark thm

The spectrum of $\varphi\left(\mathrm{S}_{u}\right)$

- Theorem (spectral mapping) Let u be inner and $\varphi: \mathbb{D} \rightarrow \mathbb{C}$ be analytic with a continuous extension to $\overline{\mathbb{D}}$, then
- $\sigma\left(\varphi\left(S_{u}\right)\right)=\varphi\left(\sigma\left(S_{u}\right)\right)=\varphi(\sigma(u))$
- $\sigma_{e}\left(\varphi\left(S_{u}\right)\right)=\varphi\left(\sigma_{e}\left(S_{u}\right)\right)=\varphi(\sigma(u) \cap \mathbb{T})$
- Theorem Let u be inner and $\varphi \in H^{\infty}$. Then

$$
\sigma\left(\varphi\left(S_{u}\right)\right)=\left\{\lambda \in \mathbb{C}: \inf _{z \in \mathbb{D}}(|u(z)|+|\varphi(z)-\lambda|)=0\right\}
$$

- Theorem (point spectrum) Let u be inner and $\varphi \in H^{\infty}$. Fix $\lambda \in \mathbb{C}$. Set

$$
v=\operatorname{gcd}\left((\varphi-\lambda)_{\text {inner }}, u\right)
$$

Then

$$
\operatorname{ker}\left(\varphi\left(S_{u}\right)-\lambda\right)=\frac{u}{v} \mathcal{K}_{v} \quad \text { and } \quad \operatorname{ker}\left(\bar{\varphi}\left(S_{u}\right)-\bar{\lambda}\right)=\mathcal{K}_{v}
$$

Notes:

- Livšic-Möller gives $\sigma\left(S_{u}\right)=\sigma(u)$
- The statement on $\sigma_{e}\left(\varphi\left(S_{u}\right)\right)$ needs some operator algebra machinery
- Compare with: $\sigma\left(S_{u}\right)=\sigma(u)$

$$
=\left\{\lambda \in \overline{\mathbb{D}}: \liminf _{z \rightarrow \lambda}|u(z)|=0\right\}
$$

- Need to define $\bar{\varphi}\left(S_{u}\right)$ first (c.f. "Truncated Toeplitz ops")

So, $\lambda \in \sigma_{p}\left(\varphi\left(S_{u}\right)\right) \quad \Leftrightarrow \quad \bar{\lambda} \in \sigma_{\mathrm{p}}\left(\bar{\varphi}\left(S_{u}\right)\right) \quad \Leftrightarrow \quad v=\operatorname{gcd}\left((\varphi-\lambda)_{\text {inner }}, u\right)$ is not constant

Introduction to

 Model Spaces and their Operators
Thank you!

STEPHAN RAMON GARCIA JAVAD MASHREGHI
WILLIAM T. ROSS

